
Scweet
Pricing
$0.30 / 1,000 tweets

Scweet
Scweet is a scalable tweet-scraping tool built on the open-source Scweet library. Just specify dates, keywords, hashtags, and tweet count—the Actor automatically scales to fetch data at up to 1000 tweets per minute only $0.30 per 1000 tweets. All results come in JSON/CSV format.
5.0 (1)
Pricing
$0.30 / 1,000 tweets
7
Monthly users
30
Runs succeeded
>99%
Response time
1.7 days
Last modified
2 hours ago
You can access the Scweet programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "1.0",
5 "x-build-id": "pjNuMQygbLxwjCSu2"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/altimis~scweet/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-altimis-scweet",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/altimis~scweet/runs": {
50 "post": {
51 "operationId": "runs-sync-altimis-scweet",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/altimis~scweet/run-sync": {
93 "post": {
94 "operationId": "run-sync-altimis-scweet",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "properties": {
134 "words_and": {
135 "title": "Words (AND)",
136 "type": "array",
137 "description": "Each word in this list must appear in the tweet. The word shouldn't contain Spaces.",
138 "default": [],
139 "items": {
140 "type": "string"
141 }
142 },
143 "words_or": {
144 "title": "Words (OR)",
145 "type": "array",
146 "description": "At least one of these words must appear in the tweet. The word shouldn't contain Spaces.",
147 "default": [],
148 "items": {
149 "type": "string"
150 }
151 },
152 "hashtag": {
153 "title": "Hashtags",
154 "type": "array",
155 "description": "List of hashtags to include in the search.",
156 "default": [],
157 "items": {
158 "type": "string"
159 }
160 },
161 "since": {
162 "title": "Since (Start Date)",
163 "type": "string",
164 "description": "Select start date for tweets to scrape (YYYY-MM-DD)."
165 },
166 "until": {
167 "title": "Until (End Date)",
168 "type": "string",
169 "description": "Select end date for tweets to scrape (YYYY-MM-DD)."
170 },
171 "maxItems": {
172 "title": "Max Tweets",
173 "type": "string",
174 "description": "Maximum number of tweets to attempt to retrieve.",
175 "default": "1000"
176 },
177 "from_user": {
178 "title": "From User",
179 "type": "string",
180 "description": "Scrape tweets from this user (no @). If no words/hashtags were given, the output will contain all the tweets posted by this user in the given date interval.",
181 "default": ""
182 },
183 "to_user": {
184 "title": "To User",
185 "type": "string",
186 "description": "Scrape tweets directed to or replying to this user. If no words/hashtags were given, the output will contain all the tweets directed to/ replaying to this user in the given date interval.",
187 "default": ""
188 },
189 "type": {
190 "title": "Search Type",
191 "enum": [
192 "Top",
193 "Latest"
194 ],
195 "type": "string",
196 "description": "Type of tweets to fetch: 'Top' or 'Latest'.",
197 "default": "Top"
198 },
199 "lang": {
200 "title": "Language",
201 "enum": [
202 "en",
203 "ab",
204 "aa",
205 "af",
206 "ak",
207 "sq",
208 "am",
209 "ar",
210 "an",
211 "hy",
212 "as",
213 "av",
214 "ae",
215 "ay",
216 "az",
217 "bm",
218 "ba",
219 "eu",
220 "be",
221 "bn",
222 "bh",
223 "bi",
224 "bs",
225 "br",
226 "bg",
227 "my",
228 "ca",
229 "ch",
230 "ce",
231 "ny",
232 "zh",
233 "cv",
234 "kw",
235 "co",
236 "cr",
237 "hr",
238 "cs",
239 "da",
240 "dv",
241 "nl",
242 "eo",
243 "et",
244 "ee",
245 "fo",
246 "fj",
247 "fi",
248 "fr",
249 "ff",
250 "gl",
251 "ka",
252 "de",
253 "el",
254 "gn",
255 "gu",
256 "ht",
257 "ha",
258 "he",
259 "iw",
260 "hz",
261 "hi",
262 "ho",
263 "hu",
264 "ia",
265 "id",
266 "ie",
267 "ga",
268 "ig",
269 "ik",
270 "io",
271 "is",
272 "it",
273 "iu",
274 "ja",
275 "jv",
276 "kl",
277 "kn",
278 "kr",
279 "ks",
280 "kk",
281 "km",
282 "ki",
283 "rw",
284 "ky",
285 "kv",
286 "kg",
287 "ko",
288 "ku",
289 "kj",
290 "la",
291 "lb",
292 "lg",
293 "li",
294 "ln",
295 "lo",
296 "lt",
297 "lu",
298 "lv",
299 "gv",
300 "mk",
301 "mg",
302 "ms",
303 "ml",
304 "mt",
305 "mi",
306 "mr",
307 "mh",
308 "mn",
309 "na",
310 "nv",
311 "nb",
312 "nd",
313 "ne",
314 "ng",
315 "nn",
316 "no",
317 "ii",
318 "nr",
319 "oc",
320 "oj",
321 "cu",
322 "om",
323 "or",
324 "os",
325 "pa",
326 "pi",
327 "fa",
328 "pl",
329 "ps",
330 "pt",
331 "qu",
332 "rm",
333 "rn",
334 "ro",
335 "ru",
336 "sa",
337 "sc",
338 "sd",
339 "se",
340 "sm",
341 "sg",
342 "sr",
343 "gd",
344 "sn",
345 "si",
346 "sk",
347 "sl",
348 "so",
349 "st",
350 "es",
351 "su",
352 "sw",
353 "ss",
354 "sv",
355 "ta",
356 "te",
357 "tg",
358 "th",
359 "ti",
360 "bo",
361 "tk",
362 "tl",
363 "tn",
364 "to",
365 "tr",
366 "ts",
367 "tt",
368 "tw",
369 "ty",
370 "ug",
371 "uk",
372 "ur",
373 "uz",
374 "ve",
375 "vi",
376 "vo",
377 "wa",
378 "cy",
379 "wo",
380 "fy",
381 "xh",
382 "yi",
383 "yo",
384 "za"
385 ],
386 "type": "string",
387 "description": "Restrict tweets by language (e.g. 'en').",
388 "default": "en"
389 },
390 "verified": {
391 "title": "Verified users only",
392 "type": "boolean",
393 "description": "Filter only tweets with verified users",
394 "default": false
395 },
396 "blue_verified": {
397 "title": "Blue-verified users only",
398 "type": "boolean",
399 "description": "Filter only tweets with blue_verified users",
400 "default": false
401 },
402 "retweets": {
403 "title": "Only retweets",
404 "type": "boolean",
405 "description": "Filter only retweets for other tweets",
406 "default": false
407 },
408 "replies": {
409 "title": "Only replies",
410 "type": "boolean",
411 "description": "Filter only replies to other tweets",
412 "default": false
413 },
414 "mentions": {
415 "title": "Only tweets with mentions",
416 "type": "boolean",
417 "description": "Filter only tweets with mentions",
418 "default": false
419 },
420 "hashtags": {
421 "title": "Only tweets with hashtags",
422 "type": "boolean",
423 "description": "Filter only tweets with hashtags",
424 "default": false
425 },
426 "images": {
427 "title": "Only Images",
428 "type": "boolean",
429 "description": "Filter only tweets that contain images",
430 "default": false
431 },
432 "videos": {
433 "title": "Only Videos",
434 "type": "boolean",
435 "description": "Filter only tweets that contain videos",
436 "default": false
437 },
438 "min_likes": {
439 "title": "Minimum Likes",
440 "type": "string",
441 "description": "Minimum number of likes required (e.g. '10').",
442 "default": ""
443 },
444 "min_replies": {
445 "title": "Minimum Replies",
446 "type": "string",
447 "description": "Minimum number of replies required.",
448 "default": ""
449 },
450 "min_retweets": {
451 "title": "Minimum Retweets",
452 "type": "string",
453 "description": "Minimum number of retweets required.",
454 "default": ""
455 },
456 "geocode": {
457 "title": "Geocode",
458 "type": "string",
459 "description": "Geolocation parameter, e.g. '39.8283,-98.5795,2500km'.",
460 "default": ""
461 },
462 "place": {
463 "title": "Place ID",
464 "type": "string",
465 "description": "Place ID for area-based search (e.g. '96683cc9126741d1').",
466 "default": ""
467 },
468 "near": {
469 "title": "Near (City)",
470 "type": "string",
471 "description": "Name of city or location, e.g. 'Paris'.",
472 "default": ""
473 },
474 "within": {
475 "title": "within (radius)",
476 "type": "string",
477 "description": "Within specific radius of the 'near' operator, e.g. '10km'.",
478 "default": ""
479 }
480 }
481 },
482 "runsResponseSchema": {
483 "type": "object",
484 "properties": {
485 "data": {
486 "type": "object",
487 "properties": {
488 "id": {
489 "type": "string"
490 },
491 "actId": {
492 "type": "string"
493 },
494 "userId": {
495 "type": "string"
496 },
497 "startedAt": {
498 "type": "string",
499 "format": "date-time",
500 "example": "2025-01-08T00:00:00.000Z"
501 },
502 "finishedAt": {
503 "type": "string",
504 "format": "date-time",
505 "example": "2025-01-08T00:00:00.000Z"
506 },
507 "status": {
508 "type": "string",
509 "example": "READY"
510 },
511 "meta": {
512 "type": "object",
513 "properties": {
514 "origin": {
515 "type": "string",
516 "example": "API"
517 },
518 "userAgent": {
519 "type": "string"
520 }
521 }
522 },
523 "stats": {
524 "type": "object",
525 "properties": {
526 "inputBodyLen": {
527 "type": "integer",
528 "example": 2000
529 },
530 "rebootCount": {
531 "type": "integer",
532 "example": 0
533 },
534 "restartCount": {
535 "type": "integer",
536 "example": 0
537 },
538 "resurrectCount": {
539 "type": "integer",
540 "example": 0
541 },
542 "computeUnits": {
543 "type": "integer",
544 "example": 0
545 }
546 }
547 },
548 "options": {
549 "type": "object",
550 "properties": {
551 "build": {
552 "type": "string",
553 "example": "latest"
554 },
555 "timeoutSecs": {
556 "type": "integer",
557 "example": 300
558 },
559 "memoryMbytes": {
560 "type": "integer",
561 "example": 1024
562 },
563 "diskMbytes": {
564 "type": "integer",
565 "example": 2048
566 }
567 }
568 },
569 "buildId": {
570 "type": "string"
571 },
572 "defaultKeyValueStoreId": {
573 "type": "string"
574 },
575 "defaultDatasetId": {
576 "type": "string"
577 },
578 "defaultRequestQueueId": {
579 "type": "string"
580 },
581 "buildNumber": {
582 "type": "string",
583 "example": "1.0.0"
584 },
585 "containerUrl": {
586 "type": "string"
587 },
588 "usage": {
589 "type": "object",
590 "properties": {
591 "ACTOR_COMPUTE_UNITS": {
592 "type": "integer",
593 "example": 0
594 },
595 "DATASET_READS": {
596 "type": "integer",
597 "example": 0
598 },
599 "DATASET_WRITES": {
600 "type": "integer",
601 "example": 0
602 },
603 "KEY_VALUE_STORE_READS": {
604 "type": "integer",
605 "example": 0
606 },
607 "KEY_VALUE_STORE_WRITES": {
608 "type": "integer",
609 "example": 1
610 },
611 "KEY_VALUE_STORE_LISTS": {
612 "type": "integer",
613 "example": 0
614 },
615 "REQUEST_QUEUE_READS": {
616 "type": "integer",
617 "example": 0
618 },
619 "REQUEST_QUEUE_WRITES": {
620 "type": "integer",
621 "example": 0
622 },
623 "DATA_TRANSFER_INTERNAL_GBYTES": {
624 "type": "integer",
625 "example": 0
626 },
627 "DATA_TRANSFER_EXTERNAL_GBYTES": {
628 "type": "integer",
629 "example": 0
630 },
631 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
632 "type": "integer",
633 "example": 0
634 },
635 "PROXY_SERPS": {
636 "type": "integer",
637 "example": 0
638 }
639 }
640 },
641 "usageTotalUsd": {
642 "type": "number",
643 "example": 0.00005
644 },
645 "usageUsd": {
646 "type": "object",
647 "properties": {
648 "ACTOR_COMPUTE_UNITS": {
649 "type": "integer",
650 "example": 0
651 },
652 "DATASET_READS": {
653 "type": "integer",
654 "example": 0
655 },
656 "DATASET_WRITES": {
657 "type": "integer",
658 "example": 0
659 },
660 "KEY_VALUE_STORE_READS": {
661 "type": "integer",
662 "example": 0
663 },
664 "KEY_VALUE_STORE_WRITES": {
665 "type": "number",
666 "example": 0.00005
667 },
668 "KEY_VALUE_STORE_LISTS": {
669 "type": "integer",
670 "example": 0
671 },
672 "REQUEST_QUEUE_READS": {
673 "type": "integer",
674 "example": 0
675 },
676 "REQUEST_QUEUE_WRITES": {
677 "type": "integer",
678 "example": 0
679 },
680 "DATA_TRANSFER_INTERNAL_GBYTES": {
681 "type": "integer",
682 "example": 0
683 },
684 "DATA_TRANSFER_EXTERNAL_GBYTES": {
685 "type": "integer",
686 "example": 0
687 },
688 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
689 "type": "integer",
690 "example": 0
691 },
692 "PROXY_SERPS": {
693 "type": "integer",
694 "example": 0
695 }
696 }
697 }
698 }
699 }
700 }
701 }
702 }
703 }
704}
Scweet on Apify: Fast and unlimited Tweets Scraper OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Scweet from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Pricing
Pricing model
Pay per resultThis Actor is paid per result. You are not charged for the Apify platform usage, but only a fixed price for each dataset of 1,000 items in the Actor outputs.
Price per 1,000 items
$0.30