Big Query
No credit card required
Big Query
No credit card required
Append a CSV file to a Google bigQuery table. Create a "Service credentials" at the https://console.cloud.google.com/, copy & paste the JSON file into the variable value for 'CREDENTIALS' and set it as a secret.
You can access the Big Query programmatically from your own applications by using the Apify API. You can choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "Nx4v3YRECC5RRdATW"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/juansgaitan~big-query/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-juansgaitan-big-query",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/juansgaitan~big-query/runs": {
50 "post": {
51 "operationId": "runs-sync-juansgaitan-big-query",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/juansgaitan~big-query/run-sync": {
93 "post": {
94 "operationId": "run-sync-juansgaitan-big-query",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "properties": {}
134 },
135 "runsResponseSchema": {
136 "type": "object",
137 "properties": {
138 "data": {
139 "type": "object",
140 "properties": {
141 "id": {
142 "type": "string"
143 },
144 "actId": {
145 "type": "string"
146 },
147 "userId": {
148 "type": "string"
149 },
150 "startedAt": {
151 "type": "string",
152 "format": "date-time",
153 "example": "2025-01-08T00:00:00.000Z"
154 },
155 "finishedAt": {
156 "type": "string",
157 "format": "date-time",
158 "example": "2025-01-08T00:00:00.000Z"
159 },
160 "status": {
161 "type": "string",
162 "example": "READY"
163 },
164 "meta": {
165 "type": "object",
166 "properties": {
167 "origin": {
168 "type": "string",
169 "example": "API"
170 },
171 "userAgent": {
172 "type": "string"
173 }
174 }
175 },
176 "stats": {
177 "type": "object",
178 "properties": {
179 "inputBodyLen": {
180 "type": "integer",
181 "example": 2000
182 },
183 "rebootCount": {
184 "type": "integer",
185 "example": 0
186 },
187 "restartCount": {
188 "type": "integer",
189 "example": 0
190 },
191 "resurrectCount": {
192 "type": "integer",
193 "example": 0
194 },
195 "computeUnits": {
196 "type": "integer",
197 "example": 0
198 }
199 }
200 },
201 "options": {
202 "type": "object",
203 "properties": {
204 "build": {
205 "type": "string",
206 "example": "latest"
207 },
208 "timeoutSecs": {
209 "type": "integer",
210 "example": 300
211 },
212 "memoryMbytes": {
213 "type": "integer",
214 "example": 1024
215 },
216 "diskMbytes": {
217 "type": "integer",
218 "example": 2048
219 }
220 }
221 },
222 "buildId": {
223 "type": "string"
224 },
225 "defaultKeyValueStoreId": {
226 "type": "string"
227 },
228 "defaultDatasetId": {
229 "type": "string"
230 },
231 "defaultRequestQueueId": {
232 "type": "string"
233 },
234 "buildNumber": {
235 "type": "string",
236 "example": "1.0.0"
237 },
238 "containerUrl": {
239 "type": "string"
240 },
241 "usage": {
242 "type": "object",
243 "properties": {
244 "ACTOR_COMPUTE_UNITS": {
245 "type": "integer",
246 "example": 0
247 },
248 "DATASET_READS": {
249 "type": "integer",
250 "example": 0
251 },
252 "DATASET_WRITES": {
253 "type": "integer",
254 "example": 0
255 },
256 "KEY_VALUE_STORE_READS": {
257 "type": "integer",
258 "example": 0
259 },
260 "KEY_VALUE_STORE_WRITES": {
261 "type": "integer",
262 "example": 1
263 },
264 "KEY_VALUE_STORE_LISTS": {
265 "type": "integer",
266 "example": 0
267 },
268 "REQUEST_QUEUE_READS": {
269 "type": "integer",
270 "example": 0
271 },
272 "REQUEST_QUEUE_WRITES": {
273 "type": "integer",
274 "example": 0
275 },
276 "DATA_TRANSFER_INTERNAL_GBYTES": {
277 "type": "integer",
278 "example": 0
279 },
280 "DATA_TRANSFER_EXTERNAL_GBYTES": {
281 "type": "integer",
282 "example": 0
283 },
284 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
285 "type": "integer",
286 "example": 0
287 },
288 "PROXY_SERPS": {
289 "type": "integer",
290 "example": 0
291 }
292 }
293 },
294 "usageTotalUsd": {
295 "type": "number",
296 "example": 0.00005
297 },
298 "usageUsd": {
299 "type": "object",
300 "properties": {
301 "ACTOR_COMPUTE_UNITS": {
302 "type": "integer",
303 "example": 0
304 },
305 "DATASET_READS": {
306 "type": "integer",
307 "example": 0
308 },
309 "DATASET_WRITES": {
310 "type": "integer",
311 "example": 0
312 },
313 "KEY_VALUE_STORE_READS": {
314 "type": "integer",
315 "example": 0
316 },
317 "KEY_VALUE_STORE_WRITES": {
318 "type": "number",
319 "example": 0.00005
320 },
321 "KEY_VALUE_STORE_LISTS": {
322 "type": "integer",
323 "example": 0
324 },
325 "REQUEST_QUEUE_READS": {
326 "type": "integer",
327 "example": 0
328 },
329 "REQUEST_QUEUE_WRITES": {
330 "type": "integer",
331 "example": 0
332 },
333 "DATA_TRANSFER_INTERNAL_GBYTES": {
334 "type": "integer",
335 "example": 0
336 },
337 "DATA_TRANSFER_EXTERNAL_GBYTES": {
338 "type": "integer",
339 "example": 0
340 },
341 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
342 "type": "integer",
343 "example": 0
344 },
345 "PROXY_SERPS": {
346 "type": "integer",
347 "example": 0
348 }
349 }
350 }
351 }
352 }
353 }
354 }
355 }
356 }
357}
Big Query OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Big Query from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Actor Metrics
1 monthly user
-
3 bookmarks
0% runs succeeded
Created in Jan 2018
Modified 2 years ago