Scraped Data Cleaner & Converter (No-Code CSV/JSON Tool) - PPE avatar
Scraped Data Cleaner & Converter (No-Code CSV/JSON Tool) - PPE

Pricing

Pay per event

Go to Store
Scraped Data Cleaner & Converter (No-Code CSV/JSON Tool) - PPE

Scraped Data Cleaner & Converter (No-Code CSV/JSON Tool) - PPE

Developed by

M3Web

M3Web

Maintained by Community

Clean and organize scraped .json or .csv data β€” no coding required. Remove duplicates, empty rows, unwanted columns, and sort by any field. Cleaned results are stored in Apify's Key-Value Store. Perfect for marketers, researchers, and no-code workflows.

0.0 (0)

Pricing

Pay per event

1

Total users

1

Monthly users

1

Runs succeeded

>99%

Last modified

2 days ago

You can access the Scraped Data Cleaner & Converter (No-Code CSV/JSON Tool) - PPE programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.

{
"openapi": "3.0.1",
"info": {
"version": "0.0",
"x-build-id": "8gUvEQeJVUfxmj0GQ"
},
"servers": [
{
"url": "https://api.apify.com/v2"
}
],
"paths": {
"/acts/m3web~scraped-data-cleaner-ppe/run-sync-get-dataset-items": {
"post": {
"operationId": "run-sync-get-dataset-items-m3web-scraped-data-cleaner-ppe",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
},
"/acts/m3web~scraped-data-cleaner-ppe/runs": {
"post": {
"operationId": "runs-sync-m3web-scraped-data-cleaner-ppe",
"x-openai-isConsequential": false,
"summary": "Executes an Actor and returns information about the initiated run in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/runsResponseSchema"
}
}
}
}
}
}
},
"/acts/m3web~scraped-data-cleaner-ppe/run-sync": {
"post": {
"operationId": "run-sync-m3web-scraped-data-cleaner-ppe",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
}
},
"components": {
"schemas": {
"inputSchema": {
"type": "object",
"properties": {
"uploadedDataFile": {
"title": "1.1 πŸ“ Uploaded Data File",
"type": "string",
"description": "Upload a CSV or JSON file, or paste a full Apify URL for a stored record. The file must contain structured rows of data with fields you want to clean or filter."
},
"deduplicateBy": {
"title": "1.2 🧠 Deduplicate By Field",
"type": "string",
"description": "Enter the name of a field (e.g. 'email', 'product_id') to remove duplicate rows. Only the first row with each unique value will be kept.",
"default": ""
},
"removeEmpty": {
"title": "1.3 🧹 Remove Empty Rows",
"type": "boolean",
"description": "Removes rows that contain no meaningful data. Works for both CSV and JSON files.",
"default": true
},
"requiredFields": {
"title": "2.1.1 πŸ”Ž Must-Have Fields",
"type": "array",
"description": "Specify one or more field names (e.g. 'email', 'phone'). Rows missing required data in these fields will be removed.",
"items": {
"type": "string"
}
},
"requireAllFields": {
"title": "2.1.2 πŸ”Ž Match All Required Fields",
"type": "boolean",
"description": "If checked, rows must contain data in ALL required fields. If unchecked, rows with data in ANY one required field will be kept.",
"default": false
},
"requiredFieldKey": {
"title": "2.2.1 🎯 Filter by Field",
"type": "string",
"description": "Keep only rows where this field matches a specific value. Enter the field name (e.g. 'member', 'status').",
"default": ""
},
"requiredFieldValue": {
"title": "2.2.2 🎯 Match Specific Value",
"type": "string",
"description": "Value to match for the field above (e.g. 'pro', 'active'). Only exact matches will be kept.",
"default": ""
},
"removeColumns": {
"title": "3.1 πŸͺ“ Remove Fields",
"type": "array",
"description": "List of field names to remove from each row (e.g. 'email', 'internal_notes'). Applies to both CSV and JSON.",
"items": {
"type": "string"
}
},
"sortBy": {
"title": "4.1 πŸ“Œ Sort By Field(s)",
"type": "array",
"description": "Fields to sort by, in order of priority (e.g. 'status', 'created_at'). Applies to both CSV and JSON.",
"items": {
"type": "string"
}
},
"sortDescending": {
"title": "4.2 πŸ”„ Sort in Descending Order",
"type": "boolean",
"description": "Enable to sort rows from Z–A or high-to-low for numeric/date values.",
"default": false
}
}
},
"runsResponseSchema": {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"actId": {
"type": "string"
},
"userId": {
"type": "string"
},
"startedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"finishedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"status": {
"type": "string",
"example": "READY"
},
"meta": {
"type": "object",
"properties": {
"origin": {
"type": "string",
"example": "API"
},
"userAgent": {
"type": "string"
}
}
},
"stats": {
"type": "object",
"properties": {
"inputBodyLen": {
"type": "integer",
"example": 2000
},
"rebootCount": {
"type": "integer",
"example": 0
},
"restartCount": {
"type": "integer",
"example": 0
},
"resurrectCount": {
"type": "integer",
"example": 0
},
"computeUnits": {
"type": "integer",
"example": 0
}
}
},
"options": {
"type": "object",
"properties": {
"build": {
"type": "string",
"example": "latest"
},
"timeoutSecs": {
"type": "integer",
"example": 300
},
"memoryMbytes": {
"type": "integer",
"example": 1024
},
"diskMbytes": {
"type": "integer",
"example": 2048
}
}
},
"buildId": {
"type": "string"
},
"defaultKeyValueStoreId": {
"type": "string"
},
"defaultDatasetId": {
"type": "string"
},
"defaultRequestQueueId": {
"type": "string"
},
"buildNumber": {
"type": "string",
"example": "1.0.0"
},
"containerUrl": {
"type": "string"
},
"usage": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "integer",
"example": 1
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
},
"usageTotalUsd": {
"type": "number",
"example": 0.00005
},
"usageUsd": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "number",
"example": 0.00005
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
}
}
}
}
}
}
}
}

Scraped Data Cleaner & Converter (No-Code CSV/JSON Tool) - PPE OpenAPI definition

OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.

OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.

By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.

You can download the OpenAPI definitions for Scraped Data Cleaner & Converter (No-Code CSV/JSON Tool) - PPE from the options below:

If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.

You can also check out our other API clients: