
AI Product Recommendation Agent
Pricing
Pay per event

AI Product Recommendation Agent
The AI Product Recommendation Agent helps users find the best products based on their needs using a simple query. It analyzes product listings, reviews, and ratings to provide well-informed recommendations.
5.0 (3)
Pricing
Pay per event
3
Monthly users
16
Runs succeeded
95%
Last modified
a month ago
You can access the AI Product Recommendation Agent programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "91fvGuKgwGjkg46su"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/matymar~ai-product-recommendation-agent/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-matymar-ai-product-recommendation-agent",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/matymar~ai-product-recommendation-agent/runs": {
50 "post": {
51 "operationId": "runs-sync-matymar-ai-product-recommendation-agent",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/matymar~ai-product-recommendation-agent/run-sync": {
93 "post": {
94 "operationId": "run-sync-matymar-ai-product-recommendation-agent",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "query"
135 ],
136 "properties": {
137 "query": {
138 "title": "Query",
139 "type": "string",
140 "description": "Query that specifies the product you are looking for along with any preferences you may have."
141 },
142 "modelName": {
143 "title": "OpenAI model",
144 "enum": [
145 "gpt-4o",
146 "gpt-4o-mini",
147 "o1",
148 "o3-mini"
149 ],
150 "type": "string",
151 "description": "The OpenAI model to use. Currently supported models are gpt-4o and gpt-4o-mini, and the reasoning models o1 and o3-mini.",
152 "default": "gpt-4o-mini"
153 },
154 "debug": {
155 "title": "Debug",
156 "type": "boolean",
157 "description": "If enabled, the Actor will run in debug mode and produce more output.",
158 "default": false
159 }
160 }
161 },
162 "runsResponseSchema": {
163 "type": "object",
164 "properties": {
165 "data": {
166 "type": "object",
167 "properties": {
168 "id": {
169 "type": "string"
170 },
171 "actId": {
172 "type": "string"
173 },
174 "userId": {
175 "type": "string"
176 },
177 "startedAt": {
178 "type": "string",
179 "format": "date-time",
180 "example": "2025-01-08T00:00:00.000Z"
181 },
182 "finishedAt": {
183 "type": "string",
184 "format": "date-time",
185 "example": "2025-01-08T00:00:00.000Z"
186 },
187 "status": {
188 "type": "string",
189 "example": "READY"
190 },
191 "meta": {
192 "type": "object",
193 "properties": {
194 "origin": {
195 "type": "string",
196 "example": "API"
197 },
198 "userAgent": {
199 "type": "string"
200 }
201 }
202 },
203 "stats": {
204 "type": "object",
205 "properties": {
206 "inputBodyLen": {
207 "type": "integer",
208 "example": 2000
209 },
210 "rebootCount": {
211 "type": "integer",
212 "example": 0
213 },
214 "restartCount": {
215 "type": "integer",
216 "example": 0
217 },
218 "resurrectCount": {
219 "type": "integer",
220 "example": 0
221 },
222 "computeUnits": {
223 "type": "integer",
224 "example": 0
225 }
226 }
227 },
228 "options": {
229 "type": "object",
230 "properties": {
231 "build": {
232 "type": "string",
233 "example": "latest"
234 },
235 "timeoutSecs": {
236 "type": "integer",
237 "example": 300
238 },
239 "memoryMbytes": {
240 "type": "integer",
241 "example": 1024
242 },
243 "diskMbytes": {
244 "type": "integer",
245 "example": 2048
246 }
247 }
248 },
249 "buildId": {
250 "type": "string"
251 },
252 "defaultKeyValueStoreId": {
253 "type": "string"
254 },
255 "defaultDatasetId": {
256 "type": "string"
257 },
258 "defaultRequestQueueId": {
259 "type": "string"
260 },
261 "buildNumber": {
262 "type": "string",
263 "example": "1.0.0"
264 },
265 "containerUrl": {
266 "type": "string"
267 },
268 "usage": {
269 "type": "object",
270 "properties": {
271 "ACTOR_COMPUTE_UNITS": {
272 "type": "integer",
273 "example": 0
274 },
275 "DATASET_READS": {
276 "type": "integer",
277 "example": 0
278 },
279 "DATASET_WRITES": {
280 "type": "integer",
281 "example": 0
282 },
283 "KEY_VALUE_STORE_READS": {
284 "type": "integer",
285 "example": 0
286 },
287 "KEY_VALUE_STORE_WRITES": {
288 "type": "integer",
289 "example": 1
290 },
291 "KEY_VALUE_STORE_LISTS": {
292 "type": "integer",
293 "example": 0
294 },
295 "REQUEST_QUEUE_READS": {
296 "type": "integer",
297 "example": 0
298 },
299 "REQUEST_QUEUE_WRITES": {
300 "type": "integer",
301 "example": 0
302 },
303 "DATA_TRANSFER_INTERNAL_GBYTES": {
304 "type": "integer",
305 "example": 0
306 },
307 "DATA_TRANSFER_EXTERNAL_GBYTES": {
308 "type": "integer",
309 "example": 0
310 },
311 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
312 "type": "integer",
313 "example": 0
314 },
315 "PROXY_SERPS": {
316 "type": "integer",
317 "example": 0
318 }
319 }
320 },
321 "usageTotalUsd": {
322 "type": "number",
323 "example": 0.00005
324 },
325 "usageUsd": {
326 "type": "object",
327 "properties": {
328 "ACTOR_COMPUTE_UNITS": {
329 "type": "integer",
330 "example": 0
331 },
332 "DATASET_READS": {
333 "type": "integer",
334 "example": 0
335 },
336 "DATASET_WRITES": {
337 "type": "integer",
338 "example": 0
339 },
340 "KEY_VALUE_STORE_READS": {
341 "type": "integer",
342 "example": 0
343 },
344 "KEY_VALUE_STORE_WRITES": {
345 "type": "number",
346 "example": 0.00005
347 },
348 "KEY_VALUE_STORE_LISTS": {
349 "type": "integer",
350 "example": 0
351 },
352 "REQUEST_QUEUE_READS": {
353 "type": "integer",
354 "example": 0
355 },
356 "REQUEST_QUEUE_WRITES": {
357 "type": "integer",
358 "example": 0
359 },
360 "DATA_TRANSFER_INTERNAL_GBYTES": {
361 "type": "integer",
362 "example": 0
363 },
364 "DATA_TRANSFER_EXTERNAL_GBYTES": {
365 "type": "integer",
366 "example": 0
367 },
368 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
369 "type": "integer",
370 "example": 0
371 },
372 "PROXY_SERPS": {
373 "type": "integer",
374 "example": 0
375 }
376 }
377 }
378 }
379 }
380 }
381 }
382 }
383 }
384}
AI Product Recommendation Agent OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for AI Product Recommendation Agent from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Pricing
Pricing model
Pay per eventThis Actor is paid per event. You are not charged for the Apify platform usage, but only a fixed price for specific events.
Actor start per 1 GB
$0.005
Flat fee for starting an Actor run for each 1 GB of memory.
Price per 100 OpenAI tokens for gpt-4o
$0.001
Flat fee for each 100 gpt-4o tokens used.
Price per 100 OpenAI tokens for gpt-4o-mini
$0.000
Flat fee for each 100 gpt-4o-mini tokens used.
Price per 100 OpenAI tokens for o1
$0.006
Flat fee for each 100 o1tokens used.
Price per 100 OpenAI tokens for o3-mini
$0.000
Flat fee for each 100 o3-mini tokens used.