Uber Eats Restaurant Scraper avatar
Uber Eats Restaurant Scraper

Pricing

from $19.90 / 1,000 results

Go to Apify Store
Uber Eats Restaurant Scraper

Uber Eats Restaurant Scraper

Scrape Uber Eats restaurant data at scale. Get menus with prices, ratings, delivery fees, and store details. Search hundreds of restaurants by location with full pagination. Perfect for market research, price monitoring, and competitor analysis.

Pricing

from $19.90 / 1,000 results

Rating

0.0

(0)

Developer

Yasmany Grijalba Casanova

Yasmany Grijalba Casanova

Maintained by Community

Actor stats

1

Bookmarked

3

Total users

2

Monthly active users

2 days ago

Last modified

Categories

Share

Extract comprehensive restaurant data from Uber Eats — one of the largest food delivery platforms in the United States.

Apify Actor Residential Proxy United States


Table of Contents


Quick Start

Get started in three simple steps:

Step 1: Find restaurants in Miami

{
"mode": "search_stores",
"latitude": "25.7617",
"longitude": "-80.1918",
"query": "Pizza",
"max_results": 100
}

Step 2: Get restaurant details

{
"mode": "store_info",
"store_url": "https://www.ubereats.com/store/dominos-pizza/abc123-def456"
}

Step 3: Extract the menu

{
"mode": "menu",
"store_url": "https://www.ubereats.com/store/dominos-pizza/abc123-def456"
}

Tip: Start with categories mode to discover available food types in your target location.


Features

FeatureDescription
Search All RestaurantsGet hundreds of restaurants with full pagination support
Complete Menu DataFull menus with prices, descriptions, and customization options
Detailed Store ProfilesAddress, ratings, delivery info, and operating hours
Category DiscoveryFind available food categories in any US location
Real-Time DataFresh data directly from Uber Eats platform
Structured JSON OutputClean, validated data ready for analysis

Use Cases


How It Works

+------------------+ +------------------+ +------------------+ +------------------+
| STEP 1 | | STEP 2 | | STEP 3 | | STEP 4 |
| Categories |--->| Search |--->| Store Info |--->| Menu |
| Discovery | | Stores | | Details | | Extraction |
+------------------+ +------------------+ +------------------+ +------------------+
| | | |
v v v v
Food types in All restaurants Complete store Full menu with
your location matching query information prices and items

Step 1: Discover Categories

Find what food categories are available in your target location:

{
"mode": "categories",
"latitude": "25.7617",
"longitude": "-80.1918"
}

Returns: Available food categories (Pizza, Sushi, Mexican, Chinese, etc.)

Step 2: Search All Restaurants

Get all restaurants matching your criteria with full pagination:

{
"mode": "search_stores",
"latitude": "25.7617",
"longitude": "-80.1918",
"query": "Pizza",
"max_results": 500
}

Returns: Up to 500 restaurants with name, ratings, delivery fees, ETA, and coordinates.

Step 3: Get Restaurant Details

Use the store_id or store_url from Step 2 to get complete restaurant information:

{
"mode": "store_info",
"store_url": "https://www.ubereats.com/store/dominos-pizza/abc123-def456"
}

Returns: Full address, ratings, phone number, operating hours, and more.

Step 4: Get Complete Menu

Extract the full menu with all items and prices:

{
"mode": "menu",
"store_url": "https://www.ubereats.com/store/dominos-pizza/abc123-def456"
}

Returns: Categories, items, prices, descriptions, images, and availability.


Input Parameters

Required Parameters

ParameterTypeDescription
modestringOperation mode: categories, search_stores, stores, store_info, or menu

Mode-Specific Parameters

ParameterTypeRequired ForDescription
latitudestringcategories, search_storesLocation latitude
longitudestringcategories, search_storesLocation longitude
querystringstores, search_storesSearch term (e.g., "Pizza", "McDonald's")
store_urlstringstore_info, menuFull Uber Eats restaurant URL
store_idstringstore_info, menuRestaurant UUID (alternative to store_url)

Optional Parameters

ParameterDefaultDescription
max_results1000Maximum restaurants to extract (up to 5000)
request_waiting5Delay between requests in seconds (minimum: 3)

Proxy Configuration

ParameterDefaultDescription
useApifyProxytrueEnable Apify Proxy (required for production)
proxyGroups["RESIDENTIAL"]Proxy group - RESIDENTIAL recommended
proxyCountryUSProxy country code (US, CA, GB, DE, FR)

Important: This actor requires Residential proxy to work properly. The default configuration uses Apify's Residential proxy which is automatically enabled when running on the Apify platform.

Proxy Configuration Example

{
"mode": "search_stores",
"latitude": "25.7617",
"longitude": "-80.1918",
"query": "Pizza",
"useApifyProxy": true,
"proxyGroups": ["RESIDENTIAL"],
"proxyCountry": "US"
}

Operation Modes

ModeDescriptionRequired ParametersOutput
categoriesList available food categorieslatitude, longitudeFood types in location
search_storesExtract all restaurants (paginated)latitude, longitude, queryUp to 5000 restaurants
storesQuick search suggestionsqueryTop 5 matching stores
store_infoGet restaurant detailsstore_url or store_idComplete store profile
menuGet menu items/productsstore_url or store_idFull menu with prices

Output Examples

Categories Mode

{
"latitude": "25.7617",
"longitude": "-80.1918",
"total": 20,
"categories": [
{"title": "Pizza", "titleTerm": "Pizza", "type": "restaurant_category"},
{"title": "Sushi", "titleTerm": "Sushi", "type": "restaurant_category"},
{"title": "Mexican", "titleTerm": "Mexican", "type": "restaurant_category"},
{"title": "Chinese", "titleTerm": "Chinese", "type": "restaurant_category"},
{"title": "Italian", "titleTerm": "Italian", "type": "restaurant_category"}
]
}

Search Stores Mode

{
"query": "Pizza",
"latitude": "25.7617",
"longitude": "-80.1918",
"total": 374,
"data": [
{
"store_id": "abc123-def456-...",
"name": "Domino's (18505 S Dixie Hwy)",
"slug": "dominos-18505-s-dixie-hwy",
"rating": 3.9,
"review_count": "500+",
"eta_min": 15,
"eta_max": 25,
"delivery_fee": 149,
"image_url": "https://tb-static.uber.com/prod/image.jpeg",
"is_orderable": true,
"latitude": 25.59,
"longitude": -80.35,
"url": "https://www.ubereats.com/store/dominos-18505-s-dixie-hwy/abc123"
}
]
}
{
"query": "McDonald's",
"total": 5,
"data": [
{
"store_id": "uuid",
"name": "McDonald's (Palmetto Bay)",
"slug": "mcdonalds-palmetto-bay",
"categories": ["Fast Food", "American", "Burgers"],
"image_url": "https://...",
"is_orderable": true,
"url": "https://www.ubereats.com/store/mcdonalds-palmetto-bay/uuid"
}
]
}

Store Info Mode

{
"name": "McDonald's",
"store_id": "c13edd5e-4ad7-4a86-80f3-a8fc6f114a17",
"slug": "mcdonalds-palmetto-bay",
"rating": {
"ratingValue": 4.5,
"reviewCount": "1000+"
},
"location": {
"address": "17255 S Dixie Hwy",
"city": "Miami",
"latitude": 25.5918,
"longitude": -80.3536
},
"hours": ["6:00 AM - 11:00 PM"],
"phone": "+1 (305) 555-0123"
}
{
"items": 45,
"store_id": "c13edd5e-4ad7-4a86-80f3-a8fc6f114a17",
"data": [
{
"name": "Big Mac",
"description": "Two 100% beef patties, special sauce, lettuce, cheese...",
"product_id": "uuid",
"category": "Burgers",
"price_to": 7.99,
"price_from": 0.0,
"discount": 0.0,
"available": "Y",
"has_customizations": "Y",
"rating": 92,
"num_ratings": 1250,
"endorsement": "Y",
"image": "https://tb-static.uber.com/prod/image.jpeg",
"created_at": "2025-01-31"
}
]
}

Data Fields

Search Stores Mode

FieldTypeDescription
store_idstringUnique restaurant identifier (UUID)
namestringRestaurant name with location
slugstringURL-friendly name
ratingnumberAverage rating (0-5 stars)
review_countstringNumber of reviews (e.g., "500+")
eta_minnumberMinimum delivery time (minutes)
eta_maxnumberMaximum delivery time (minutes)
delivery_feenumberDelivery fee in cents (149 = $1.49)
image_urlstringRestaurant image URL
is_orderablebooleanCurrently accepting orders
latitudenumberRestaurant latitude
longitudenumberRestaurant longitude
urlstringDirect link to restaurant page
FieldTypeDescription
namestringMenu item name
descriptionstringItem description
product_idstringUnique item identifier
categorystringMenu category (e.g., "Burgers")
price_tonumberCurrent price in USD
price_fromnumberOriginal price if discounted
discountnumberDiscount percentage (0-100)
availablestring"Y" = Available, "N" = Unavailable
has_customizationsstring"Y" = Has options, "N" = No options
ratingnumberPositive ratings percentage (0-100)
num_ratingsnumberTotal number of ratings
endorsementstring"Y" = Popular item, "N" = Regular
imagestringItem image URL
created_atstringExtraction date (YYYY-MM-DD)

Code Examples

Python Integration

from apify_client import ApifyClient
# Initialize the Apify client
client = ApifyClient("your_apify_token")
# Search for Pizza restaurants in Miami
run = client.actor("YOUR_USERNAME/uber-eats-restaurant-scraper").call(run_input={
"mode": "search_stores",
"latitude": "25.7617",
"longitude": "-80.1918",
"query": "Pizza",
"max_results": 100,
"useApifyProxy": True,
"proxyGroups": ["RESIDENTIAL"],
"proxyCountry": "US"
})
# Get results from dataset
items = client.dataset(run["defaultDatasetId"]).list_items().items
restaurants = items[0]["data"]
print(f"Found {len(restaurants)} Pizza restaurants in Miami")
# Display top 5 restaurants
for restaurant in restaurants[:5]:
print(f"- {restaurant['name']}")
print(f" Rating: {restaurant['rating']} | ETA: {restaurant['eta_min']}-{restaurant['eta_max']} min")
print(f" Delivery Fee: ${restaurant['delivery_fee']/100:.2f}")
print()

JavaScript / Node.js Integration

import { ApifyClient } from 'apify-client';
const client = new ApifyClient({ token: 'your_apify_token' });
const run = await client.actor('YOUR_USERNAME/uber-eats-restaurant-scraper').call({
mode: 'search_stores',
latitude: '25.7617',
longitude: '-80.1918',
query: 'Pizza',
max_results: 100
});
const { items } = await client.dataset(run.defaultDatasetId).listItems();
console.log(`Found ${items[0].data.length} restaurants`);

How to Get Coordinates

Option 1: Google Maps

  1. Open Google Maps
  2. Right-click on any location in the United States
  3. Click on the coordinates to copy them
  4. Use the first number as latitude and second as longitude

Option 2: Use Common City Coordinates

CityLatitudeLongitude
Miami, FL25.7617-80.1918
New York, NY40.7128-74.0060
Los Angeles, CA34.0522-118.2437
Chicago, IL41.8781-87.6298
Houston, TX29.7604-95.3698
San Francisco, CA37.7749-122.4194
Las Vegas, NV36.1699-115.1398
Phoenix, AZ33.4484-112.0740
Dallas, TX32.7767-96.7970
Nashville, TN36.1627-86.7816

Important Notes

TopicDetails
RegionUnited States only - Uber Eats US market
ProxyResidential proxy required (auto-configured on Apify)
Paginationsearch_stores handles pagination automatically (80 stores/page)
Rate LimitingMinimum 3-second delay between requests
Store IdentificationUse either store_url OR store_id (not both)
CoordinatesRequired for categories and search_stores modes

FAQ


Support

Having issues? Here is how to get help:

  1. Check the FAQ above for common solutions
  2. Review your input parameters to ensure they match the required format
  3. Test with default values to ensure the actor is working
  4. Contact support through Apify for additional assistance