AI Prompt Keyword Matcher avatar
AI Prompt Keyword Matcher

Pricing

$10.00 / 1,000 results

Go to Store
AI Prompt Keyword Matcher

AI Prompt Keyword Matcher

Developed by

Antonio Blago

Antonio Blago

Maintained by Community

Analyze prompts for fuzzy keyword matches and brand token usage

0.0 (0)

Pricing

$10.00 / 1,000 results

0

Total users

1

Monthly users

1

Runs succeeded

>99%

Last modified

3 days ago

Prompt Keyword Analyzer

This Python project analyzes user prompts using fuzzy keyword matching to detect relevant tokens, brand terms, and keyword frequencies. It uses RapidFuzz for approximate string matching, nltk for multilingual stopword filtering, and supports both Markdown console output and structured JSON file export.


🔍 Features

  • Fuzzy matching using RapidFuzz
  • Multilingual stopword removal (English and German, configurable)
  • Token classification into brand and generic types
  • Flexible output format: markdown (printed to console) or json (saved to file)
  • Fully local, no Apify SDK required

📥 Example: Adidas Prompt Analysis

Here's a realistic input scenario for analyzing prompts that mention Adidas, including spelling variations and discount-related terms:

input.json

{
"prompts": [
"adidas sneaker sale today",
"white running shoes from addidas",
"Addidas Rabattcode gesucht",
"neue sportschuhe im angebot",
"discount für adidas laufschuhe",
"adidas schuhe im trend",
"sale bei addddidas online store",
"welche adidas modelle sind beliebt",
"adidass running collection deals"
],
"target_keywords": ["adidas", "sale", "rabattcode", "angebot", "discount", "schuhe", "sneaker"],
"brand_keywords": ["adidas", "addidas", "adidass", "addddidas"],
"threshold": 65,
"output_format": "markdown"
}

Sample Markdown Output:

tokenmatched_keywordscorefrequencytype
adidasadidas1004brand
addidasadidas911brand
adidassadidas911brand
rabattcoderabattcode1001generic
angebotangebot1001generic
discountdiscount1001generic
schuheschuhe1002generic
sneakersneaker1001generic
  • threshold: Minimum match score (0–100)
  • output_format: "markdown" (console) or "json" (file)

⚙️ Setup

  1. Install dependencies:
pip install -r requirements.txt
python -m nltk.downloader punkt stopwords
  1. Run the analyzer:
$python -m src

By default, it loads input.json and saves to output.json (if format is "json").

You can also specify custom paths using environment variables:

$APIFY_INPUT_PATH=custom_input.json OUTPUT_PATH=results.json python -m src

🧪 Output (Markdown Example)

| token | matched_keyword | score | frequency | type |
|----------|-----------------|-------|-----------|---------|
| purelei | purelei | 100 | 3 | brand |
| rabatt | rabattcode | 86 | 2 | generic |
| discount | discount | 100 | 1 | generic |

📝 Notes

  • Custom stopwords can be extended. please let me know via info@antonioblago.com
  • Compatible with Python 3.10+ or 3.11+

📚 Resources