AI Prompt Keyword Matcher
Pricing
$10.00 / 1,000 results
AI Prompt Keyword Matcher
Analyze prompts for fuzzy keyword matches and brand token usage
0.0 (0)
Pricing
$10.00 / 1,000 results
0
Total users
1
Monthly users
1
Runs succeeded
>99%
Last modified
3 days ago
Prompt Keyword Analyzer
This Python project analyzes user prompts using fuzzy keyword matching to detect relevant tokens, brand terms, and keyword frequencies. It uses RapidFuzz
for approximate string matching, nltk
for multilingual stopword filtering, and supports both Markdown console output and structured JSON file export.
🔍 Features
- Fuzzy matching using
RapidFuzz
- Multilingual stopword removal (English and German, configurable)
- Token classification into
brand
andgeneric
types - Flexible output format:
markdown
(printed to console) orjson
(saved to file) - Fully local, no Apify SDK required
📥 Example: Adidas Prompt Analysis
Here's a realistic input scenario for analyzing prompts that mention Adidas, including spelling variations and discount-related terms:
input.json
{"prompts": ["adidas sneaker sale today","white running shoes from addidas","Addidas Rabattcode gesucht","neue sportschuhe im angebot","discount für adidas laufschuhe","adidas schuhe im trend","sale bei addddidas online store","welche adidas modelle sind beliebt","adidass running collection deals"],"target_keywords": ["adidas", "sale", "rabattcode", "angebot", "discount", "schuhe", "sneaker"],"brand_keywords": ["adidas", "addidas", "adidass", "addddidas"],"threshold": 65,"output_format": "markdown"}
Sample Markdown Output:
token | matched_keyword | score | frequency | type |
---|---|---|---|---|
adidas | adidas | 100 | 4 | brand |
addidas | adidas | 91 | 1 | brand |
adidass | adidas | 91 | 1 | brand |
rabattcode | rabattcode | 100 | 1 | generic |
angebot | angebot | 100 | 1 | generic |
discount | discount | 100 | 1 | generic |
schuhe | schuhe | 100 | 2 | generic |
sneaker | sneaker | 100 | 1 | generic |
threshold
: Minimum match score (0–100)output_format
:"markdown"
(console) or"json"
(file)
⚙️ Setup
- Install dependencies:
pip install -r requirements.txtpython -m nltk.downloader punkt stopwords
- Run the analyzer:
$python -m src
By default, it loads input.json
and saves to output.json
(if format is "json"
).
You can also specify custom paths using environment variables:
$APIFY_INPUT_PATH=custom_input.json OUTPUT_PATH=results.json python -m src
🧪 Output (Markdown Example)
| token | matched_keyword | score | frequency | type ||----------|-----------------|-------|-----------|---------|| purelei | purelei | 100 | 3 | brand || rabatt | rabattcode | 86 | 2 | generic || discount | discount | 100 | 1 | generic |
📝 Notes
- Custom stopwords can be extended. please let me know via info@antonioblago.com
- Compatible with Python 3.10+ or 3.11+