
Monitoring Runner
Pricing
Pay per usage

Monitoring Runner
The monitoring runner is a part of the Apify Monitoring Suite (apify/monitoring). See its readme for more information and how to use this.
4.5 (2)
Pricing
Pay per usage
16
Total users
117
Monthly users
35
Runs succeeded
97%
Last modified
a year ago
You can access the Monitoring Runner programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
{ "openapi": "3.0.1", "info": { "version": "0.0", "x-build-id": "NsoMmOtydmedVKZXR" }, "servers": [ { "url": "https://api.apify.com/v2" } ], "paths": { "/acts/apify~monitoring-runner/run-sync-get-dataset-items": { "post": { "operationId": "run-sync-get-dataset-items-apify-monitoring-runner", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } }, "/acts/apify~monitoring-runner/runs": { "post": { "operationId": "runs-sync-apify-monitoring-runner", "x-openai-isConsequential": false, "summary": "Executes an Actor and returns information about the initiated run in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/runsResponseSchema" } } } } } } }, "/acts/apify~monitoring-runner/run-sync": { "post": { "operationId": "run-sync-apify-monitoring-runner", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } } }, "components": { "schemas": { "inputSchema": { "type": "object", "required": [ "targetType" ], "properties": { "projectName": { "title": "Monitoring suite name", "pattern": "^([a-zA-Z0-9!\\-_.'()]{1,15})$", "maxLength": 15, "type": "string", "description": "Name of your monitoring suite. It will be used in notifications and to identify related resources in the Apify dashboard." }, "targetType": { "title": "Type of target", "enum": [ "ACTOR", "TASK", "NAMED_DATASET" ], "type": "string", "description": "Only one type of target can be monitored by a single monitoring suite. If you want to watch more types, create more monitoring suites.", "default": "ACTOR" }, "targetPatternList": { "title": "Target name patterns", "type": "array", "description": "Regular expressions that will be matched against selected actors / tasks or datasets under your Apify account. All matching targets will then be monitored by this monitoring suite. This is typically also the fastest way to select a single target. Just type its full name. Datasets are going to be automatically group by these patterns when dashboard statistics is counted for dataset target type.", "default": [], "items": { "type": "string" } }, "targetList": { "title": "Target IDs", "type": "array", "description": "If for whatever reason the Target name pattern option does not suit you, targets can also be specified by providing their IDs, as found in your Apify dashboard.", "default": [], "items": { "type": "string" } }, "limit": { "title": "Max items to be checked", "minimum": 1, "maximum": 1000, "type": "integer", "description": "Last items to be checked. If 100 is passed, only last hundred runs/datasets will be checked. ", "default": 1000 }, "saveHistory": { "title": "Save history", "type": "boolean", "description": "All monitoring runs results are saved in named dataset", "default": false }, "resourceStatsCollector": { "title": "Resource stats collector", "type": "boolean", "description": "Works with Subject type 'Actor', 'Task' and 'Named dateaset', Gets information about the runs TODO: LINK TO PA" }, "duplicationChecker": { "title": "Duplication checker", "type": "boolean", "description": "Checks for duplicates based on defined unique fields. Based on 'https://apify.com/lukaskrivka/duplications-checker'" }, "schemaValidatorChecker": { "title": "Schema validator checker", "type": "boolean", "description": "Validates dataset items based on the Type check library" }, "runStatusChecker": { "title": "Run status validator", "type": "boolean", "description": "Validates run status" }, "checkers": { "title": "Checkers", "uniqueItems": true, "type": "array", "description": "Ids of checker actors or tasks that needs", "default": [], "items": { "type": "string" } }, "checkersInput": { "title": "Checkers input", "type": "object", "description": "Pass input to checkers" }, "dashboard": { "title": "Dashboard", "type": "boolean", "description": "Works with Subject type 'Actor', 'Task' 'Named dataset'. Starts dashboard actor. LINK TO PA" }, "emailReporter": { "title": "Email", "type": "boolean", "description": "Sends report to mail inbox. LINK TO PA for input" }, "slackReporter": { "title": "Slack", "type": "boolean", "description": "Sends report to custom slack channel. LINK TO PA for input" }, "reporters": { "title": "Reporters", "uniqueItems": true, "type": "array", "description": "Id of reporter actors or tasks", "default": [], "items": { "type": "string" } }, "reportersInput": { "title": "Checkers input", "type": "object", "description": "Pass input to checkers" }, "frequency": { "title": "The frequency of task", "type": "string", "description": "If passed the resources will be filtered by the frequency of the task. For example if you pass MONTHLY only resources modified last month will be collected." } } }, "runsResponseSchema": { "type": "object", "properties": { "data": { "type": "object", "properties": { "id": { "type": "string" }, "actId": { "type": "string" }, "userId": { "type": "string" }, "startedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "finishedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "status": { "type": "string", "example": "READY" }, "meta": { "type": "object", "properties": { "origin": { "type": "string", "example": "API" }, "userAgent": { "type": "string" } } }, "stats": { "type": "object", "properties": { "inputBodyLen": { "type": "integer", "example": 2000 }, "rebootCount": { "type": "integer", "example": 0 }, "restartCount": { "type": "integer", "example": 0 }, "resurrectCount": { "type": "integer", "example": 0 }, "computeUnits": { "type": "integer", "example": 0 } } }, "options": { "type": "object", "properties": { "build": { "type": "string", "example": "latest" }, "timeoutSecs": { "type": "integer", "example": 300 }, "memoryMbytes": { "type": "integer", "example": 1024 }, "diskMbytes": { "type": "integer", "example": 2048 } } }, "buildId": { "type": "string" }, "defaultKeyValueStoreId": { "type": "string" }, "defaultDatasetId": { "type": "string" }, "defaultRequestQueueId": { "type": "string" }, "buildNumber": { "type": "string", "example": "1.0.0" }, "containerUrl": { "type": "string" }, "usage": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "integer", "example": 1 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } }, "usageTotalUsd": { "type": "number", "example": 0.00005 }, "usageUsd": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "number", "example": 0.00005 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } } } } } } } }}
Monitoring Runner OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Monitoring Runner from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: