Naver Keyword Scraper avatar
Naver Keyword Scraper

Pricing

$5.00 / 1,000 results

Go to Store
Naver Keyword Scraper

Naver Keyword Scraper

Developed by

billygogo

billygogo

Maintained by Community

This Apify actor scrapes keyword rankings from Naver Shopping Insights (datalab.naver.com). It extracts popular search keywords for specific categories, time periods, and demographic filters.

0.0 (0)

Pricing

$5.00 / 1,000 results

1

Total users

1

Monthly users

1

Runs succeeded

>99%

Last modified

2 days ago

You can access the Naver Keyword Scraper programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.

{
"openapi": "3.0.1",
"info": {
"version": "0.0",
"x-build-id": "wiwq3GSCdanvRcxAH"
},
"servers": [
{
"url": "https://api.apify.com/v2"
}
],
"paths": {
"/acts/billygogo~naver-keyword-scraper/run-sync-get-dataset-items": {
"post": {
"operationId": "run-sync-get-dataset-items-billygogo-naver-keyword-scraper",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
},
"/acts/billygogo~naver-keyword-scraper/runs": {
"post": {
"operationId": "runs-sync-billygogo-naver-keyword-scraper",
"x-openai-isConsequential": false,
"summary": "Executes an Actor and returns information about the initiated run in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/runsResponseSchema"
}
}
}
}
}
}
},
"/acts/billygogo~naver-keyword-scraper/run-sync": {
"post": {
"operationId": "run-sync-billygogo-naver-keyword-scraper",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
}
},
"components": {
"schemas": {
"inputSchema": {
"type": "object",
"required": [
"cid",
"timeUnit",
"startDate",
"endDate"
],
"properties": {
"cid": {
"title": "Category Code",
"type": "string",
"description": "Lowest level category ID (e.g., 50000065)",
"default": "50000065"
},
"timeUnit": {
"title": "Time Unit",
"enum": [
"date",
"week",
"month"
],
"type": "string",
"description": "Time period unit for data aggregation",
"default": "date"
},
"startDate": {
"title": "Start Date",
"pattern": "^\\d{4}-\\d{2}-\\d{2}$",
"type": "string",
"description": "Start date in YYYY-MM-DD format",
"default": "2025-06-01"
},
"endDate": {
"title": "End Date",
"pattern": "^\\d{4}-\\d{2}-\\d{2}$",
"type": "string",
"description": "End date in YYYY-MM-DD format",
"default": "2025-06-25"
},
"totalPage": {
"title": "Number of Pages to Scrape",
"type": "string",
"description": "Total number of pages to scrape (1-100)",
"default": "1"
},
"count": {
"title": "Number of Keywords per Page",
"type": "string",
"description": "Number of keywords to retrieve per page (1-100)",
"default": "10"
},
"age": {
"title": "Age Filter",
"enum": [
"",
"10",
"20",
"30",
"40",
"50",
"60"
],
"type": "string",
"description": "Filter by age group (optional)",
"default": ""
},
"gender": {
"title": "Gender Filter",
"enum": [
"",
"f",
"m"
],
"type": "string",
"description": "Filter by gender (optional)",
"default": ""
},
"device": {
"title": "Device Filter",
"enum": [
"",
"m",
"p"
],
"type": "string",
"description": "Filter by device type (optional)",
"default": ""
}
}
},
"runsResponseSchema": {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"actId": {
"type": "string"
},
"userId": {
"type": "string"
},
"startedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"finishedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"status": {
"type": "string",
"example": "READY"
},
"meta": {
"type": "object",
"properties": {
"origin": {
"type": "string",
"example": "API"
},
"userAgent": {
"type": "string"
}
}
},
"stats": {
"type": "object",
"properties": {
"inputBodyLen": {
"type": "integer",
"example": 2000
},
"rebootCount": {
"type": "integer",
"example": 0
},
"restartCount": {
"type": "integer",
"example": 0
},
"resurrectCount": {
"type": "integer",
"example": 0
},
"computeUnits": {
"type": "integer",
"example": 0
}
}
},
"options": {
"type": "object",
"properties": {
"build": {
"type": "string",
"example": "latest"
},
"timeoutSecs": {
"type": "integer",
"example": 300
},
"memoryMbytes": {
"type": "integer",
"example": 1024
},
"diskMbytes": {
"type": "integer",
"example": 2048
}
}
},
"buildId": {
"type": "string"
},
"defaultKeyValueStoreId": {
"type": "string"
},
"defaultDatasetId": {
"type": "string"
},
"defaultRequestQueueId": {
"type": "string"
},
"buildNumber": {
"type": "string",
"example": "1.0.0"
},
"containerUrl": {
"type": "string"
},
"usage": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "integer",
"example": 1
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
},
"usageTotalUsd": {
"type": "number",
"example": 0.00005
},
"usageUsd": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "number",
"example": 0.00005
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
}
}
}
}
}
}
}
}

Naver Keyword Scraper OpenAPI definition

OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.

OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.

By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.

You can download the OpenAPI definitions for Naver Keyword Scraper from the options below:

If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.

You can also check out our other API clients: