
LinkedIn Jobs Scraper – Incredibly Fast ⚡️
Pricing
$19.00/month + usage

LinkedIn Jobs Scraper – Incredibly Fast ⚡️
Designed for both personal and professional use, our ⚡️ Blazing fast LinkedIn job scraper scrapes 1,000 listings in under 2 minutes. Built-in residential & datacenter proxy rotation. No setup. Export to CSV, JSON, and more.
5.0 (1)
Pricing
$19.00/month + usage
0
Total users
4
Monthly users
4
Last modified
2 days ago
You can access the LinkedIn Jobs Scraper – Incredibly Fast ⚡️ programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
{ "openapi": "3.0.1", "info": { "version": "0.0", "x-build-id": "Vg1f3EMxlcmZI2eH5" }, "servers": [ { "url": "https://api.apify.com/v2" } ], "paths": { "/acts/data_wizard~linkedin-jobs-scraper/run-sync-get-dataset-items": { "post": { "operationId": "run-sync-get-dataset-items-data_wizard-linkedin-jobs-scraper", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } }, "/acts/data_wizard~linkedin-jobs-scraper/runs": { "post": { "operationId": "runs-sync-data_wizard-linkedin-jobs-scraper", "x-openai-isConsequential": false, "summary": "Executes an Actor and returns information about the initiated run in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/runsResponseSchema" } } } } } } }, "/acts/data_wizard~linkedin-jobs-scraper/run-sync": { "post": { "operationId": "run-sync-data_wizard-linkedin-jobs-scraper", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } } }, "components": { "schemas": { "inputSchema": { "type": "object", "required": [ "query", "location", "timePostedRange" ], "properties": { "query": { "title": "Query", "type": "string", "description": "Title of the job, e.g. 'Python Developer'" }, "location": { "title": "Location", "type": "string", "description": "This will be used to search for jobs in the given location" }, "timePostedRange": { "title": "Time Posted Range", "enum": [ "", "86400", "259200", "604800", "2592000" ], "type": "string", "description": "Fetch jobs posted in the last N days", "default": "" }, "jobsToFetch": { "title": "Total Jobs to Fetch", "minimum": 1, "maximum": 1000, "type": "integer", "description": "Total number of jobs to fetch. Maximum is 1000." }, "contract": { "title": "Contract", "type": "boolean", "description": "If checked then jobs will be filtered for contract jobs" }, "fullTime": { "title": "Full-time", "type": "boolean", "description": "If checked then jobs will be filtered for full-time jobs" }, "partTime": { "title": "Part-time", "type": "boolean", "description": "If checked then jobs will be filtered for part-time jobs" }, "temporary": { "title": "Temporary", "type": "boolean", "description": "If checked then jobs will be filtered for temporary jobs" }, "volunteer": { "title": "Volunteer", "type": "boolean", "description": "If checked then jobs will be filtered for volunteer jobs" }, "internship": { "title": "Internship", "type": "boolean", "description": "If checked then jobs will be filtered for internship jobs" }, "internshipLevel": { "title": "Internship", "type": "boolean", "description": "If checked then jobs will be filtered for internship experience" }, "entryLevel": { "title": "Entry Level", "type": "boolean", "description": "If checked then jobs will be filtered for entry level jobs" }, "associate": { "title": "Associate", "type": "boolean", "description": "If checked then jobs will be filtered for associate jobs" }, "midSeniorLevel": { "title": "Mid-Senior Level", "type": "boolean", "description": "If checked then jobs will be filtered for mid-senior level jobs" }, "director": { "title": "Director", "type": "boolean", "description": "If checked then jobs will be filtered for director jobs" }, "onSite": { "title": "On-Site", "type": "boolean", "description": "If checked then jobs will be filtered for on-site jobs", "default": true }, "remote": { "title": "Remote", "type": "boolean", "description": "If checked then jobs will be filtered for remote jobs" }, "hybrid": { "title": "Hybrid", "type": "boolean", "description": "If checked then jobs will be filtered for hybrid jobs" }, "proxySettings": { "title": "Proxy configuration", "type": "object", "description": "Select proxies to be used. If not selected then the default proxy pool will be used" } } }, "runsResponseSchema": { "type": "object", "properties": { "data": { "type": "object", "properties": { "id": { "type": "string" }, "actId": { "type": "string" }, "userId": { "type": "string" }, "startedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "finishedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "status": { "type": "string", "example": "READY" }, "meta": { "type": "object", "properties": { "origin": { "type": "string", "example": "API" }, "userAgent": { "type": "string" } } }, "stats": { "type": "object", "properties": { "inputBodyLen": { "type": "integer", "example": 2000 }, "rebootCount": { "type": "integer", "example": 0 }, "restartCount": { "type": "integer", "example": 0 }, "resurrectCount": { "type": "integer", "example": 0 }, "computeUnits": { "type": "integer", "example": 0 } } }, "options": { "type": "object", "properties": { "build": { "type": "string", "example": "latest" }, "timeoutSecs": { "type": "integer", "example": 300 }, "memoryMbytes": { "type": "integer", "example": 1024 }, "diskMbytes": { "type": "integer", "example": 2048 } } }, "buildId": { "type": "string" }, "defaultKeyValueStoreId": { "type": "string" }, "defaultDatasetId": { "type": "string" }, "defaultRequestQueueId": { "type": "string" }, "buildNumber": { "type": "string", "example": "1.0.0" }, "containerUrl": { "type": "string" }, "usage": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "integer", "example": 1 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } }, "usageTotalUsd": { "type": "number", "example": 0.00005 }, "usageUsd": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "number", "example": 0.00005 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } } } } } } } }}
LinkedIn Jobs Scraper – Blazing Fast OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for LinkedIn Jobs Scraper – Incredibly Fast ⚡️ from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: