
Browserless Scraper Pro
Pay $10.00 for 1,000 results

Browserless Scraper Pro
Pay $10.00 for 1,000 results
Browserless Scraper Pro is designed to automate common web tasks such as web scraping, taking screenshots, and generating PDFs without the need for manual browser interaction.
You can access the Browserless Scraper Pro programmatically from your own applications by using the Apify API. You can choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "zIs9l1YujIHsZbfcz"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/datavoyantlab~browserless-scraper-pro/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-datavoyantlab-browserless-scraper-pro",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/datavoyantlab~browserless-scraper-pro/runs": {
50 "post": {
51 "operationId": "runs-sync-datavoyantlab-browserless-scraper-pro",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/datavoyantlab~browserless-scraper-pro/run-sync": {
93 "post": {
94 "operationId": "run-sync-datavoyantlab-browserless-scraper-pro",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "urls",
135 "operation"
136 ],
137 "properties": {
138 "urls": {
139 "title": "URLs of the pages",
140 "minItems": 1,
141 "maxItems": 10,
142 "uniqueItems": true,
143 "type": "array",
144 "description": "The URLs of the websites from which you want to scrape data, take screenshots, or generate PDFs.",
145 "items": {
146 "type": "string"
147 }
148 },
149 "operation": {
150 "title": "Operation",
151 "enum": [
152 "scrape",
153 "screenshot",
154 "pdf"
155 ],
156 "type": "string",
157 "description": "The operation to perform on the page (e.g., 'scrape', 'screenshot', 'pdf').",
158 "default": "scrape"
159 },
160 "format": {
161 "title": "Output Format (if operation is scrape)",
162 "enum": [
163 "html",
164 "readability",
165 "cleaned_html",
166 "markdown"
167 ],
168 "type": "string",
169 "description": "The format of the output data. Applicable only when the operation is 'scrape'.",
170 "default": "html"
171 },
172 "delay": {
173 "title": "Delay in milliseconds before the operation",
174 "minimum": 0,
175 "type": "integer",
176 "description": "The delay in milliseconds before the operation is performed.",
177 "default": 0
178 },
179 "fullPage": {
180 "title": "Full Page Screenshot (if operation is screenshot)",
181 "type": "boolean",
182 "description": "Set to true if a full page screenshot is required.",
183 "default": false
184 },
185 "proxy": {
186 "title": "Proxy Configuration",
187 "type": "object",
188 "description": "Proxy configuration for the run."
189 }
190 }
191 },
192 "runsResponseSchema": {
193 "type": "object",
194 "properties": {
195 "data": {
196 "type": "object",
197 "properties": {
198 "id": {
199 "type": "string"
200 },
201 "actId": {
202 "type": "string"
203 },
204 "userId": {
205 "type": "string"
206 },
207 "startedAt": {
208 "type": "string",
209 "format": "date-time",
210 "example": "2025-01-08T00:00:00.000Z"
211 },
212 "finishedAt": {
213 "type": "string",
214 "format": "date-time",
215 "example": "2025-01-08T00:00:00.000Z"
216 },
217 "status": {
218 "type": "string",
219 "example": "READY"
220 },
221 "meta": {
222 "type": "object",
223 "properties": {
224 "origin": {
225 "type": "string",
226 "example": "API"
227 },
228 "userAgent": {
229 "type": "string"
230 }
231 }
232 },
233 "stats": {
234 "type": "object",
235 "properties": {
236 "inputBodyLen": {
237 "type": "integer",
238 "example": 2000
239 },
240 "rebootCount": {
241 "type": "integer",
242 "example": 0
243 },
244 "restartCount": {
245 "type": "integer",
246 "example": 0
247 },
248 "resurrectCount": {
249 "type": "integer",
250 "example": 0
251 },
252 "computeUnits": {
253 "type": "integer",
254 "example": 0
255 }
256 }
257 },
258 "options": {
259 "type": "object",
260 "properties": {
261 "build": {
262 "type": "string",
263 "example": "latest"
264 },
265 "timeoutSecs": {
266 "type": "integer",
267 "example": 300
268 },
269 "memoryMbytes": {
270 "type": "integer",
271 "example": 1024
272 },
273 "diskMbytes": {
274 "type": "integer",
275 "example": 2048
276 }
277 }
278 },
279 "buildId": {
280 "type": "string"
281 },
282 "defaultKeyValueStoreId": {
283 "type": "string"
284 },
285 "defaultDatasetId": {
286 "type": "string"
287 },
288 "defaultRequestQueueId": {
289 "type": "string"
290 },
291 "buildNumber": {
292 "type": "string",
293 "example": "1.0.0"
294 },
295 "containerUrl": {
296 "type": "string"
297 },
298 "usage": {
299 "type": "object",
300 "properties": {
301 "ACTOR_COMPUTE_UNITS": {
302 "type": "integer",
303 "example": 0
304 },
305 "DATASET_READS": {
306 "type": "integer",
307 "example": 0
308 },
309 "DATASET_WRITES": {
310 "type": "integer",
311 "example": 0
312 },
313 "KEY_VALUE_STORE_READS": {
314 "type": "integer",
315 "example": 0
316 },
317 "KEY_VALUE_STORE_WRITES": {
318 "type": "integer",
319 "example": 1
320 },
321 "KEY_VALUE_STORE_LISTS": {
322 "type": "integer",
323 "example": 0
324 },
325 "REQUEST_QUEUE_READS": {
326 "type": "integer",
327 "example": 0
328 },
329 "REQUEST_QUEUE_WRITES": {
330 "type": "integer",
331 "example": 0
332 },
333 "DATA_TRANSFER_INTERNAL_GBYTES": {
334 "type": "integer",
335 "example": 0
336 },
337 "DATA_TRANSFER_EXTERNAL_GBYTES": {
338 "type": "integer",
339 "example": 0
340 },
341 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
342 "type": "integer",
343 "example": 0
344 },
345 "PROXY_SERPS": {
346 "type": "integer",
347 "example": 0
348 }
349 }
350 },
351 "usageTotalUsd": {
352 "type": "number",
353 "example": 0.00005
354 },
355 "usageUsd": {
356 "type": "object",
357 "properties": {
358 "ACTOR_COMPUTE_UNITS": {
359 "type": "integer",
360 "example": 0
361 },
362 "DATASET_READS": {
363 "type": "integer",
364 "example": 0
365 },
366 "DATASET_WRITES": {
367 "type": "integer",
368 "example": 0
369 },
370 "KEY_VALUE_STORE_READS": {
371 "type": "integer",
372 "example": 0
373 },
374 "KEY_VALUE_STORE_WRITES": {
375 "type": "number",
376 "example": 0.00005
377 },
378 "KEY_VALUE_STORE_LISTS": {
379 "type": "integer",
380 "example": 0
381 },
382 "REQUEST_QUEUE_READS": {
383 "type": "integer",
384 "example": 0
385 },
386 "REQUEST_QUEUE_WRITES": {
387 "type": "integer",
388 "example": 0
389 },
390 "DATA_TRANSFER_INTERNAL_GBYTES": {
391 "type": "integer",
392 "example": 0
393 },
394 "DATA_TRANSFER_EXTERNAL_GBYTES": {
395 "type": "integer",
396 "example": 0
397 },
398 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
399 "type": "integer",
400 "example": 0
401 },
402 "PROXY_SERPS": {
403 "type": "integer",
404 "example": 0
405 }
406 }
407 }
408 }
409 }
410 }
411 }
412 }
413 }
414}
Browserless Scraper Pro OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Browserless Scraper Pro from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Actor Metrics
6 monthly users
-
1 bookmark
>99% runs succeeded
Created in Jan 2025
Modified a month ago