Advanced Social Media Agent
Pricing
Pay per event
Go to Apify Store

Advanced Social Media Agent
A production-grade AI agent built on cutting-edge research patterns for intelligent social media analysis on the Apify platform.
Pricing
Pay per event
Rating
0.0
(0)
Developer

Cody Churchwell
Maintained by Community
Actor stats
0
Bookmarked
2
Total users
1
Monthly active users
4 days ago
Last modified
Categories
Share
Advanced Social Media Analysis Agent
A production-grade AI agent built on cutting-edge research patterns for intelligent social media analysis on the Apify platform.
Architecture Overview
This agent implements state-of-the-art AI agent patterns based on research papers and production best practices:
Core Patterns Implemented
-
ReAct (Reasoning + Acting) - Paper
- Interleaves chain-of-thought reasoning with tool-using actions
- Thought -> Action -> Observation cycle
- 34% improvement over imitation learning on ALFWorld
-
Reflexion (Self-Improvement) - Paper
- Verbal reinforcement learning through self-reflection
- Episodic memory for storing lessons learned
- 91% pass@1 on HumanEval (vs GPT-4's 80%)
-
12-Factor Agents - GitHub
- Production principles from 100+ SaaS builders
- Small, focused agents (3-20 steps max)
- Own your control flow
- Compact errors into context for self-healing
-
Multi-Tier Memory System
- Working Memory: Current conversation context
- Episodic Memory: Task-specific learnings
- Semantic Memory: General knowledge
- Procedural Memory: How to perform tasks
-
Human-in-the-Loop
- Approval gates for high-risk actions
- Interrupt/resume capabilities
- Confidence-based escalation
Features
- Intelligent Reasoning: ReAct pattern for transparent decision-making
- Self-Improvement: Reflexion pattern learns from each execution
- Advanced Memory: Multi-tier memory system for context retention
- Human-in-the-Loop: Approval gates for sensitive operations
- Full Observability: Distributed tracing, metrics, cost tracking
- Error Recovery: Self-healing with exponential backoff
- Cost Control: Budget limits and usage tracking
- Multiple Modes: Autonomous, Supervised, Interactive, Research
Project Structure
agent-actor/├── .actor/│ ├── actor.json # Actor configuration│ ├── input_schema.json # Input schema with UI│ ├── dataset_schema.json # Output schema│ ├── pay_per_event.json # Monetization config│ └── Dockerfile # Container setup├── src/│ ├── main.py # Entry point│ ├── core/│ │ ├── agent.py # Main agent orchestrator│ │ ├── state.py # State management│ │ └── control_flow.py # Flow control engine│ ├── patterns/│ │ ├── react.py # ReAct implementation│ │ └── reflection.py # Reflexion implementation│ ├── memory/│ │ └── memory_system.py # Multi-tier memory│ ├── tools/│ │ ├── instagram.py # Instagram scraper tool│ │ └── analysis.py # Analysis tools│ └── observability/│ └── tracing.py # Tracing & metrics└── requirements.txt
Usage
Basic Usage
from src.core.agent import AgentBuilder, AgentMode# Build the agentagent = (AgentBuilder().with_name("SocialMediaAnalyzer").with_mode(AgentMode.SUPERVISED).with_memory().with_reflection().with_budget(1.0) # $1 USD limit.with_tools(instagram_tools).with_tools(analysis_tools).build(llm_client))# Run a taskresult = await agent.run(task="Analyze the last 10 posts from @openai and summarize AI trends")print(f"Success: {result.success}")print(f"Response: {result.output}")print(f"Cost: ${result.cost_usd:.4f}")
Input Configuration
| Parameter | Description | Default |
|---|---|---|
query | The task for the agent | Required |
modelName | LLM model to use | gpt-4o |
mode | Operating mode | supervised |
maxSteps | Maximum reasoning steps | 20 |
budgetLimit | Cost limit in USD | None |
enableMemory | Enable memory system | true |
enableReflection | Enable self-reflection | true |
Agent Modes
- Autonomous: Full autonomy within defined constraints
- Supervised: Requires approval for important/risky actions
- Interactive: Step-by-step execution with human guidance
- Research: Read-only mode, no side effects
Architecture Deep Dive
State Management (Factor 5 & 12)
# State is the single source of truth# Agent is a pure function: (state, event) => new_stateclass AgentState:events: List[AgentEvent] # Append-only event logreasoning_chain: List[Step] # ReAct reasoning traceconversation: ConversationCtx # Short-term contextreflections: List[Reflection] # Self-improvement learnings
Control Flow (Factor 8)
# Own your control flow - deterministic routingasync def handle_next_step(thread):next_step = await determine_next_step(thread)if next_step.intent == 'request_clarification':# INTERRUPT: Break loop, wait for humanawait send_message_to_human(next_step)breakelif next_step.intent == 'fetch_data':# SYNC: Execute and continueresult = await fetch_data(next_step)thread.events.append(result)continueelif next_step.intent == 'deploy':# HIGH-RISK: Request approvalawait request_human_approval(next_step)break
Error Recovery (Factor 9)
consecutive_errors = 0while True:try:result = await handle_step(thread, step)consecutive_errors = 0 # Reset on successexcept Exception as e:consecutive_errors += 1if consecutive_errors < 3:# Self-healing: add error to context for LLMthread.events.append({"type": "error", "data": format_error(e)})continueelse:# Escalate to human after thresholdawait escalate_to_human()break
Memory System
┌─────────────────────────────────────────────────────────┐│ Memory System │├─────────────────────────────────────────────────────────┤│ Working Memory (Short-term) ││ ├── Current goal ││ ├── Active plan ││ ├── Recent events (20 items) ││ └── Entity tracking │├─────────────────────────────────────────────────────────┤│ Episodic Memory (Medium-term) ││ ├── Past task experiences ││ ├── Success/failure patterns ││ └── Specific event memories │├─────────────────────────────────────────────────────────┤│ Semantic Memory (Long-term) ││ ├── General knowledge/facts ││ ├── Consolidated learnings ││ └── Entity relationships │├─────────────────────────────────────────────────────────┤│ Procedural Memory ││ ├── How to perform tasks ││ ├── Tool usage patterns ││ └── Strategy templates │└─────────────────────────────────────────────────────────┘
Observability
The agent includes comprehensive observability:
- Distributed Tracing: Track every step with span hierarchy
- Metrics Collection: Counters, gauges, histograms, timers
- Cost Tracking: Per-model, per-operation cost breakdown
- Structured Logging: JSON logs for aggregation
# Get execution summarysummary = agent.get_observability_summary()# Returns:{"trace": {"total_spans": 15,"total_duration_ms": 12500,"total_tokens": 8432,"total_cost_usd": 0.0847},"metrics": {"tool_calls_success": 5,"tool_calls_error": 1},"costs": {"cost_by_model": {"gpt-4o": 0.0847},"cost_by_operation": {"generate": 0.0647, "analyze": 0.02}}}
Best Practices (from 12-Factor Agents)
- Small, Focused Agents: 3-20 steps max per agent
- Own Your Context Window: Custom formats for efficiency
- Tools Are Structured Outputs: Function calling IS structured output
- Contact Humans with Tools: Human interaction as first-class tool
- Compact Errors: Self-healing with formatted error context
- Stateless Reducer: Agent = pure function (state, event) => state
References
- ReAct Paper - Synergizing Reasoning and Acting
- Reflexion Paper - Language Agents with Verbal Reinforcement
- 12-Factor Agents - Production patterns
- LangGraph Memory - Stateful workflows
- CrewAI - Multi-agent orchestration
Development
# Install dependenciespip install -r requirements.txt# Run locallyapify run# Deploy to Apifyapify push
License
MIT License