
GLASSDOOR ๐ช Scraper HD
7 days trial then $30.00/month - No credit card required now

GLASSDOOR ๐ช Scraper HD
7 days trial then $30.00/month - No credit card required now
๐ซ All-in-One GlassDoor.com Scraper
You can access the GLASSDOOR ๐ช Scraper HD programmatically from your own applications by using the Apify API. You can choose the language preference from below. To use the Apify API, youโll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "QnvTzkQc7lOzZmD85"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/jupri~glassdoor/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-jupri-glassdoor",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/jupri~glassdoor/runs": {
50 "post": {
51 "operationId": "runs-sync-jupri-glassdoor",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/jupri~glassdoor/run-sync": {
93 "post": {
94 "operationId": "run-sync-jupri-glassdoor",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "properties": {
134 "query": {
135 "title": "โ Query",
136 "type": "array",
137 "description": "๐ก Job Title",
138 "items": {
139 "type": "string"
140 }
141 },
142 "mode": {
143 "title": "โ Command",
144 "enum": [
145 "jobs",
146 "Employers",
147 "companies",
148 "salaries",
149 "reviews",
150 "interviews"
151 ],
152 "type": "string",
153 "description": "๐ก This is shortcuts for QUERY commands"
154 },
155 "limit": {
156 "title": "โพ๏ธ Limit",
157 "type": "integer",
158 "description": "๐ก Number of results per QUERY"
159 },
160 "filters.location": {
161 "title": "๐งญ Location",
162 "type": "string",
163 "description": "๐ก Location Name or ID"
164 },
165 "filters.easy_apply": {
166 "title": "Easy apply only",
167 "type": "boolean",
168 "description": ""
169 },
170 "filters.remote": {
171 "title": "Remote only",
172 "type": "boolean",
173 "description": ""
174 },
175 "filters.min_salary": {
176 "title": "Salary Range",
177 "type": "integer",
178 "description": ""
179 },
180 "filters.max_salary": {
181 "title": "",
182 "type": "integer",
183 "description": ""
184 },
185 "filters.company": {
186 "title": "๐ข Company",
187 "type": "string",
188 "description": "๐ก Company Name or ID"
189 },
190 "filters.min_rating": {
191 "title": "Company rating",
192 "enum": [
193 "5.0",
194 "4.5",
195 "4.0",
196 "3.5",
197 "3.0",
198 "2.5",
199 "2.0",
200 "1.0"
201 ],
202 "type": "string",
203 "description": "๐ก Company minimal rating"
204 },
205 "filters.company_size": {
206 "title": "Company size",
207 "enum": [
208 "1",
209 "2",
210 "3",
211 "4",
212 "5"
213 ],
214 "type": "string",
215 "description": "๐ก Number of employees"
216 },
217 "filters.job_age": {
218 "title": "Date Posted",
219 "type": "integer",
220 "description": "๐ก Job posted date"
221 },
222 "filters.seniority": {
223 "title": "Seniority levels",
224 "enum": [
225 "internship",
226 "entrylevel",
227 "midseniorlevel",
228 "director",
229 "executive"
230 ],
231 "type": "string",
232 "description": ""
233 },
234 "filters.topic": {
235 "title": "Topic",
236 "type": "string",
237 "description": ""
238 },
239 "filters.employment_status": {
240 "title": "Employment status",
241 "type": "string",
242 "description": ""
243 },
244 "filters.language": {
245 "title": "Language",
246 "enum": [
247 "eng",
248 "fra",
249 "deu",
250 "nld",
251 "por",
252 "spa",
253 "ita"
254 ],
255 "type": "string",
256 "description": "๐ก Reviews Language"
257 },
258 "filters.industries": {
259 "title": "Industries",
260 "type": "array",
261 "description": "",
262 "items": {
263 "type": "string",
264 "enum": [
265 "10001",
266 "200002",
267 "200156",
268 "200157",
269 "10002",
270 "200003",
271 "10003",
272 "200004",
273 "200005",
274 "200006",
275 "200007",
276 "200008",
277 "200009",
278 "10004",
279 "200011",
280 "200013",
281 "200016",
282 "200018",
283 "200020",
284 "10005",
285 "200021",
286 "200163",
287 "200164",
288 "10006",
289 "200024",
290 "200028",
291 "200029",
292 "200030",
293 "200031",
294 "200158",
295 "10007",
296 "200023",
297 "200034",
298 "200035",
299 "200036",
300 "200037",
301 "10008",
302 "200038",
303 "200039",
304 "200040",
305 "200041",
306 "200042",
307 "200043",
308 "200162",
309 "10009",
310 "200044",
311 "200045",
312 "200046",
313 "200047",
314 "10010",
315 "200001",
316 "200048",
317 "200052",
318 "200055",
319 "200146",
320 "200148",
321 "10011",
322 "200056",
323 "200057",
324 "200058",
325 "10012",
326 "200059",
327 "200149",
328 "200150",
329 "200151",
330 "200152",
331 "200153",
332 "10013",
333 "200060",
334 "200061",
335 "200063",
336 "200064",
337 "200155",
338 "10014",
339 "200065",
340 "200066",
341 "10015",
342 "200027",
343 "200068",
344 "200070",
345 "200071",
346 "200072",
347 "200073",
348 "200074",
349 "200075",
350 "200076",
351 "200147",
352 "200159",
353 "10016",
354 "200017",
355 "200022",
356 "200077",
357 "200080",
358 "200082",
359 "200083",
360 "200160",
361 "200161",
362 "10018",
363 "200087",
364 "200088",
365 "200089",
366 "10019",
367 "200085",
368 "200091",
369 "10020",
370 "200094",
371 "200165",
372 "10021",
373 "200012",
374 "200096",
375 "200099",
376 "10022",
377 "200025",
378 "200033",
379 "200097",
380 "200100",
381 "200101",
382 "200102",
383 "200103",
384 "200105",
385 "200106",
386 "200107",
387 "200109",
388 "200110",
389 "200111",
390 "200113",
391 "200115",
392 "200116",
393 "200117",
394 "200118",
395 "200119",
396 "200145",
397 "10023",
398 "200120",
399 "200122",
400 "10024",
401 "200127",
402 "200128",
403 "200130",
404 "200132",
405 "200134",
406 "200135",
407 "200166",
408 "10025",
409 "200139",
410 "200144",
411 "10026",
412 "200032",
413 "200154"
414 ],
415 "enumTitles": [
416 "๐ Legal",
417 "๐ Legal",
418 "๐ Law Firms",
419 "๐ Legal Services",
420 "๐ Aerospace & Defense",
421 "๐ Aerospace & Defense",
422 "๐ Agriculture",
423 "๐ Animal Production",
424 "๐ Fishery",
425 "๐ Farm Support",
426 "๐ Floral Nursery",
427 "๐ Crop Production",
428 "๐ Forestry, Logging & Timber Operations",
429 "๐ Arts, Entertainment & Recreation",
430 "๐ Audiovisual",
431 "๐ Gambling",
432 "๐ Culture & Entertainment",
433 "๐ Sports & Recreation",
434 "๐ Ticket Sales",
435 "๐ Pharmaceutical & Biotechnology",
436 "๐ Biotech & Pharmaceuticals",
437 "๐ Biotechnology",
438 "๐ Pharmaceutical",
439 "๐ Management & Consulting",
440 "๐ Building & Personnel Services",
441 "๐ Business Consulting",
442 "๐ Membership Organizations",
443 "๐ Research & Development",
444 "๐ Security & Protective",
445 "๐ Waste Management",
446 "๐ Construction, Repair & Maintenance Services",
447 "๐ Architectural & Engineering Services",
448 "๐ Vehicle Repair & Maintenance",
449 "๐ Commercial Equipment Services",
450 "๐ Construction",
451 "๐ General Repair & Maintenance",
452 "๐ Personal Consumer Services",
453 "๐ Consumer Product Rental",
454 "๐ Event Services",
455 "๐ Beauty & Wellness",
456 "๐ Laundry & Dry Cleaning",
457 "๐ Property Management",
458 "๐ Pet Care & Veterinary",
459 "๐ Private Households",
460 "๐ Education",
461 "๐ Colleges & Universities",
462 "๐ Education & Training Services",
463 "๐ Primary & Secondary Schools",
464 "๐ Preschools & Child Care Services",
465 "๐ Financial Services",
466 "๐ Accounting & Tax",
467 "๐ Banking & Lending",
468 "๐ Financial Transaction Processing",
469 "๐ Stock Exchanges",
470 "๐ Investment & Asset Management",
471 "๐ Debt Relief",
472 "๐ Government & Public Administration",
473 "๐ National Agencies",
474 "๐ Municipal Agencies",
475 "๐ State & Regional Agencies",
476 "๐ Healthcare",
477 "๐ Health Care Services & Hospitals",
478 "๐ Ambulance & Medical Transportation",
479 "๐ Dental Clinics",
480 "๐ Hospitals & Health Clinics",
481 "๐ Medical Testing & Clinical Laboratories",
482 "๐ Nursing Care Facilities",
483 "๐ Information Technology",
484 "๐ Computer Hardware Development",
485 "๐ Enterprise Software & Network Solutions",
486 "๐ Internet & Web Services",
487 "๐ Information Technology Support Services",
488 "๐ Software Development",
489 "๐ Insurance",
490 "๐ Insurance Agencies & Brokerages",
491 "๐ Insurance Carriers",
492 "๐ Manufacturing",
493 "๐ Commercial Printing",
494 "๐ Chemical Manufacturing",
495 "๐ Electronics Manufacturing",
496 "๐ Food & Beverage Manufacturing",
497 "๐ Health Care Products Manufacturing",
498 "๐ Machinery Manufacturing",
499 "๐ Metal & Mineral Manufacturing",
500 "๐ Transportation Equipment Manufacturing",
501 "๐ Wood & Paper Manufacturing",
502 "๐ Consumer Product Manufacturing",
503 "๐ Textile & Apparel Manufacturing",
504 "๐ Media & Communication",
505 "๐ Photography",
506 "๐ Advertising & Public Relations",
507 "๐ Film Production",
508 "๐ Publishing",
509 "๐ Broadcast Media",
510 "๐ Video Game Publishing",
511 "๐ Music & Sound Production",
512 "๐ Translation & Linguistic Services",
513 "๐ Nonprofit & NGO",
514 "๐ Grantmaking & Charitable Foundations",
515 "๐ Religious Institutions",
516 "๐ Civic & Social Services",
517 "๐ Energy, Mining & Utilities",
518 "๐ Mining & Metals",
519 "๐ Energy & Utilities",
520 "๐ Real Estate",
521 "๐ Real Estate",
522 "๐ Real Estate Agencies",
523 "๐ Restaurants & Food Service",
524 "๐ Bars & Nightclubs",
525 "๐ Catering & Food Service Contractors",
526 "๐ Restaurants & Cafes",
527 "๐ Retail & Wholesale",
528 "๐ Office Supply & Copy Stores",
529 "๐ Wholesale",
530 "๐ Convenience Stores",
531 "๐ Auctions & Galleries",
532 "๐ Automotive Parts & Accessories Stores",
533 "๐ Beauty & Personal Accessories Stores",
534 "๐ Consumer Electronics & Appliances Stores",
535 "๐ Department, Clothing & Shoe Stores",
536 "๐ Drug & Health Stores",
537 "๐ Food & Beverage Stores",
538 "๐ General Merchandise & Superstores",
539 "๐ Gift, Novelty & Souvenir Stores",
540 "๐ Home Furniture & Housewares Stores",
541 "๐ Media & Entertainment Stores",
542 "๐ Other Retail Stores",
543 "๐ Pet & Pet Supplies Stores",
544 "๐ Sporting Goods Stores",
545 "๐ Toy & Hobby Stores",
546 "๐ Vehicle Dealers",
547 "๐ Grocery Stores",
548 "๐ Telecommunications",
549 "๐ Cable, Internet & Telephone Providers",
550 "๐ Telecommunications Services",
551 "๐ Transportation & Logistics",
552 "๐ Parking & Valet",
553 "๐ Rail Transportation",
554 "๐ Shipping & Trucking",
555 "๐ Car & Truck Rental",
556 "๐ Airlines, Airports & Air Transportation",
557 "๐ Taxi & Car Services",
558 "๐ Marine Transportation",
559 "๐ Hotels & Travel Accommodation",
560 "๐ Hotels & Resorts",
561 "๐ Travel Agencies",
562 "๐ Human Resources & Staffing",
563 "๐ HR Consulting",
564 "๐ Staffing & Subcontracting"
565 ]
566 }
567 },
568 "filters.functions": {
569 "title": "Functions",
570 "type": "array",
571 "description": "",
572 "items": {
573 "type": "string",
574 "enum": [
575 "1001",
576 "1002",
577 "1003",
578 "1004",
579 "1005",
580 "1006",
581 "1007",
582 "1008",
583 "1009",
584 "1010",
585 "1011",
586 "1012",
587 "1013",
588 "1014",
589 "1015",
590 "1016",
591 "1017",
592 "1018",
593 "1019",
594 "1020",
595 "1021",
596 "1022",
597 "1023"
598 ],
599 "enumTitles": [
600 "๐ท๏ธ Administrative",
601 "๐ท๏ธ Arts & Design",
602 "๐ท๏ธ Business",
603 "๐ท๏ธ Consulting",
604 "๐ท๏ธ Customer Services & Support",
605 "๐ท๏ธ Education",
606 "๐ท๏ธ Engineering",
607 "๐ท๏ธ Finance & Accounting",
608 "๐ท๏ธ Healthcare",
609 "๐ท๏ธ Human Resources",
610 "๐ท๏ธ Information Technology",
611 "๐ท๏ธ Legal",
612 "๐ท๏ธ Marketing",
613 "๐ท๏ธ Media & Communications",
614 "๐ท๏ธ Military & Protective Services",
615 "๐ท๏ธ Operations",
616 "๐ท๏ธ Other",
617 "๐ท๏ธ Product & Project Management",
618 "๐ท๏ธ Research & Science",
619 "๐ท๏ธ Retail & Food Services",
620 "๐ท๏ธ Sales",
621 "๐ท๏ธ Skilled Labor & Manufacturing",
622 "๐ท๏ธ Transportation"
623 ]
624 }
625 },
626 "dev_proxy_config": {
627 "title": "๐ PROXY NETWORKING",
628 "type": "object",
629 "description": "๐ก <b>Supported protocol:</b><br><br><b>HTTP(S), SOCKS5</b><br><code>{http|socks5}://{user:pass}@{hostname|ip-address}:port</code><br><br><b>Example</b>: <code>socks5://example.com:9000</code>"
630 },
631 "dev_custom_headers": {
632 "title": "๐ HTTP HEADERS",
633 "type": "array",
634 "description": "๐ก Additional HTTP Headers",
635 "items": {
636 "type": "object",
637 "required": [
638 "key",
639 "value"
640 ],
641 "properties": {
642 "key": {
643 "type": "string",
644 "title": "Key"
645 },
646 "value": {
647 "type": "string",
648 "title": "Value"
649 }
650 }
651 }
652 },
653 "dev_custom_cookies": {
654 "title": "๐ฐ HTTP COOKIES",
655 "type": "array",
656 "description": "๐ก Additional HTTP Cookies",
657 "items": {
658 "type": "object",
659 "required": [
660 "key",
661 "value"
662 ],
663 "properties": {
664 "key": {
665 "type": "string",
666 "title": "Key"
667 },
668 "value": {
669 "type": "string",
670 "title": "Value"
671 }
672 }
673 }
674 },
675 "dev_transform_fields": {
676 "title": "โป๏ธ CUSTOM FIELD",
677 "type": "array",
678 "description": "๐ก <b>Transform the resulting output. Select only needed fields.</b><br><br>For nested object use <b>DOT</b>. For example: <pre>address.streetAddress</pre><br>For nested array use <b>NUMBER</b> <i>(index of array element starting from index=0)</i>. For example: <pre>images.0.url</pre>",
679 "items": {
680 "type": "object",
681 "required": [
682 "key",
683 "value"
684 ],
685 "properties": {
686 "key": {
687 "type": "string",
688 "title": "Key"
689 },
690 "value": {
691 "type": "string",
692 "title": "Value"
693 }
694 }
695 }
696 },
697 "dev_dataset_name": {
698 "title": "๐ CUSTOM STORAGE",
699 "type": "string",
700 "description": "๐ก <b>Save results into custom named Dataset, use mask to customize dataset name</b><br><br><code>{ACTOR} = actor name<br>{DATE} = date (YYYYMMDD)<br>{TIME} = time (HHMMSS)</code><br><br>This masks can be used to autogenerate Dataset Name.<br><br>example: <i><code>data-{DATE}</code></i><br>Depending on today date the dataset name will be: <code>data-20230603</code><i><br><br>default: <code>data-{ACTOR}-{DATE}-{TIME}</code></i>"
701 },
702 "dev_dataset_clear": {
703 "title": "Clear Storage",
704 "type": "boolean",
705 "description": "Clear Dataset before insert/update."
706 },
707 "dev_no_strip": {
708 "title": "Disable data cleansing",
709 "type": "boolean",
710 "description": "๐ก Keep/Save empty values <i><code>(NULL, FALSE, empty ARRAY, empty OBJECT, empty STRING)</code></i>"
711 }
712 }
713 },
714 "runsResponseSchema": {
715 "type": "object",
716 "properties": {
717 "data": {
718 "type": "object",
719 "properties": {
720 "id": {
721 "type": "string"
722 },
723 "actId": {
724 "type": "string"
725 },
726 "userId": {
727 "type": "string"
728 },
729 "startedAt": {
730 "type": "string",
731 "format": "date-time",
732 "example": "2025-01-08T00:00:00.000Z"
733 },
734 "finishedAt": {
735 "type": "string",
736 "format": "date-time",
737 "example": "2025-01-08T00:00:00.000Z"
738 },
739 "status": {
740 "type": "string",
741 "example": "READY"
742 },
743 "meta": {
744 "type": "object",
745 "properties": {
746 "origin": {
747 "type": "string",
748 "example": "API"
749 },
750 "userAgent": {
751 "type": "string"
752 }
753 }
754 },
755 "stats": {
756 "type": "object",
757 "properties": {
758 "inputBodyLen": {
759 "type": "integer",
760 "example": 2000
761 },
762 "rebootCount": {
763 "type": "integer",
764 "example": 0
765 },
766 "restartCount": {
767 "type": "integer",
768 "example": 0
769 },
770 "resurrectCount": {
771 "type": "integer",
772 "example": 0
773 },
774 "computeUnits": {
775 "type": "integer",
776 "example": 0
777 }
778 }
779 },
780 "options": {
781 "type": "object",
782 "properties": {
783 "build": {
784 "type": "string",
785 "example": "latest"
786 },
787 "timeoutSecs": {
788 "type": "integer",
789 "example": 300
790 },
791 "memoryMbytes": {
792 "type": "integer",
793 "example": 1024
794 },
795 "diskMbytes": {
796 "type": "integer",
797 "example": 2048
798 }
799 }
800 },
801 "buildId": {
802 "type": "string"
803 },
804 "defaultKeyValueStoreId": {
805 "type": "string"
806 },
807 "defaultDatasetId": {
808 "type": "string"
809 },
810 "defaultRequestQueueId": {
811 "type": "string"
812 },
813 "buildNumber": {
814 "type": "string",
815 "example": "1.0.0"
816 },
817 "containerUrl": {
818 "type": "string"
819 },
820 "usage": {
821 "type": "object",
822 "properties": {
823 "ACTOR_COMPUTE_UNITS": {
824 "type": "integer",
825 "example": 0
826 },
827 "DATASET_READS": {
828 "type": "integer",
829 "example": 0
830 },
831 "DATASET_WRITES": {
832 "type": "integer",
833 "example": 0
834 },
835 "KEY_VALUE_STORE_READS": {
836 "type": "integer",
837 "example": 0
838 },
839 "KEY_VALUE_STORE_WRITES": {
840 "type": "integer",
841 "example": 1
842 },
843 "KEY_VALUE_STORE_LISTS": {
844 "type": "integer",
845 "example": 0
846 },
847 "REQUEST_QUEUE_READS": {
848 "type": "integer",
849 "example": 0
850 },
851 "REQUEST_QUEUE_WRITES": {
852 "type": "integer",
853 "example": 0
854 },
855 "DATA_TRANSFER_INTERNAL_GBYTES": {
856 "type": "integer",
857 "example": 0
858 },
859 "DATA_TRANSFER_EXTERNAL_GBYTES": {
860 "type": "integer",
861 "example": 0
862 },
863 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
864 "type": "integer",
865 "example": 0
866 },
867 "PROXY_SERPS": {
868 "type": "integer",
869 "example": 0
870 }
871 }
872 },
873 "usageTotalUsd": {
874 "type": "number",
875 "example": 0.00005
876 },
877 "usageUsd": {
878 "type": "object",
879 "properties": {
880 "ACTOR_COMPUTE_UNITS": {
881 "type": "integer",
882 "example": 0
883 },
884 "DATASET_READS": {
885 "type": "integer",
886 "example": 0
887 },
888 "DATASET_WRITES": {
889 "type": "integer",
890 "example": 0
891 },
892 "KEY_VALUE_STORE_READS": {
893 "type": "integer",
894 "example": 0
895 },
896 "KEY_VALUE_STORE_WRITES": {
897 "type": "number",
898 "example": 0.00005
899 },
900 "KEY_VALUE_STORE_LISTS": {
901 "type": "integer",
902 "example": 0
903 },
904 "REQUEST_QUEUE_READS": {
905 "type": "integer",
906 "example": 0
907 },
908 "REQUEST_QUEUE_WRITES": {
909 "type": "integer",
910 "example": 0
911 },
912 "DATA_TRANSFER_INTERNAL_GBYTES": {
913 "type": "integer",
914 "example": 0
915 },
916 "DATA_TRANSFER_EXTERNAL_GBYTES": {
917 "type": "integer",
918 "example": 0
919 },
920 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
921 "type": "integer",
922 "example": 0
923 },
924 "PROXY_SERPS": {
925 "type": "integer",
926 "example": 0
927 }
928 }
929 }
930 }
931 }
932 }
933 }
934 }
935 }
936}
Glassdoor.com AIO Scraper OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for GLASSDOOR ๐ช Scraper HD from the options below:
If youโd like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Actor Metrics
4 monthly users
-
1 bookmark
94% runs succeeded
Created in Oct 2023
Modified 4 months ago