
LinkedIn Outreach Email Generator Agent
Pricing
Pay per event

LinkedIn Outreach Email Generator Agent
Powerful agent-actor designed to automate the process of crafting personalized outreach emails based on LinkedIn profiles. Network, offer a job, propose collaboration, or initiate a sales conversation, this tool utilizes AI to generate contextually relevant and tailored outreach messages.
0.0 (0)
Pricing
Pay per event
2
Monthly users
18
Runs succeeded
>99%
Last modified
19 days ago
You can access the LinkedIn Outreach Email Generator Agent programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "kKzyLHaM2b4IaLMB5"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/logical_scrapers~linkedin-outreach-email-generator-agent/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-logical_scrapers-linkedin-outreach-email-generator-agent",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/logical_scrapers~linkedin-outreach-email-generator-agent/runs": {
50 "post": {
51 "operationId": "runs-sync-logical_scrapers-linkedin-outreach-email-generator-agent",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/logical_scrapers~linkedin-outreach-email-generator-agent/run-sync": {
93 "post": {
94 "operationId": "run-sync-logical_scrapers-linkedin-outreach-email-generator-agent",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "profileUrls",
135 "outreachPurpose"
136 ],
137 "properties": {
138 "profileUrls": {
139 "title": "LinkedIn Profile URLs",
140 "type": "array",
141 "description": "List of LinkedIn profile URLs to generate outreach emails for.",
142 "items": {
143 "type": "string"
144 }
145 },
146 "outreachPurpose": {
147 "title": "Outreach Purpose",
148 "enum": [
149 "networking",
150 "job_opportunity",
151 "collaboration",
152 "sales",
153 "partnership",
154 "other"
155 ],
156 "type": "string",
157 "description": "The purpose of your outreach (e.g., networking, job opportunity, collaboration).",
158 "default": "networking"
159 },
160 "customMessage": {
161 "title": "Custom Message",
162 "type": "string",
163 "description": "Additional context or specific points you want to include in the outreach email."
164 },
165 "modelName": {
166 "title": "OpenAI model",
167 "enum": [
168 "gpt-4o",
169 "gpt-4o-mini"
170 ],
171 "type": "string",
172 "description": "The OpenAI model to use. Currently supported models are gpt-4o and gpt-4o-mini",
173 "default": "gpt-4o-mini"
174 },
175 "debug": {
176 "title": "Debug",
177 "type": "boolean",
178 "description": "If enabled, the Actor will run in debug mode and produce more output.",
179 "default": false
180 }
181 }
182 },
183 "runsResponseSchema": {
184 "type": "object",
185 "properties": {
186 "data": {
187 "type": "object",
188 "properties": {
189 "id": {
190 "type": "string"
191 },
192 "actId": {
193 "type": "string"
194 },
195 "userId": {
196 "type": "string"
197 },
198 "startedAt": {
199 "type": "string",
200 "format": "date-time",
201 "example": "2025-01-08T00:00:00.000Z"
202 },
203 "finishedAt": {
204 "type": "string",
205 "format": "date-time",
206 "example": "2025-01-08T00:00:00.000Z"
207 },
208 "status": {
209 "type": "string",
210 "example": "READY"
211 },
212 "meta": {
213 "type": "object",
214 "properties": {
215 "origin": {
216 "type": "string",
217 "example": "API"
218 },
219 "userAgent": {
220 "type": "string"
221 }
222 }
223 },
224 "stats": {
225 "type": "object",
226 "properties": {
227 "inputBodyLen": {
228 "type": "integer",
229 "example": 2000
230 },
231 "rebootCount": {
232 "type": "integer",
233 "example": 0
234 },
235 "restartCount": {
236 "type": "integer",
237 "example": 0
238 },
239 "resurrectCount": {
240 "type": "integer",
241 "example": 0
242 },
243 "computeUnits": {
244 "type": "integer",
245 "example": 0
246 }
247 }
248 },
249 "options": {
250 "type": "object",
251 "properties": {
252 "build": {
253 "type": "string",
254 "example": "latest"
255 },
256 "timeoutSecs": {
257 "type": "integer",
258 "example": 300
259 },
260 "memoryMbytes": {
261 "type": "integer",
262 "example": 1024
263 },
264 "diskMbytes": {
265 "type": "integer",
266 "example": 2048
267 }
268 }
269 },
270 "buildId": {
271 "type": "string"
272 },
273 "defaultKeyValueStoreId": {
274 "type": "string"
275 },
276 "defaultDatasetId": {
277 "type": "string"
278 },
279 "defaultRequestQueueId": {
280 "type": "string"
281 },
282 "buildNumber": {
283 "type": "string",
284 "example": "1.0.0"
285 },
286 "containerUrl": {
287 "type": "string"
288 },
289 "usage": {
290 "type": "object",
291 "properties": {
292 "ACTOR_COMPUTE_UNITS": {
293 "type": "integer",
294 "example": 0
295 },
296 "DATASET_READS": {
297 "type": "integer",
298 "example": 0
299 },
300 "DATASET_WRITES": {
301 "type": "integer",
302 "example": 0
303 },
304 "KEY_VALUE_STORE_READS": {
305 "type": "integer",
306 "example": 0
307 },
308 "KEY_VALUE_STORE_WRITES": {
309 "type": "integer",
310 "example": 1
311 },
312 "KEY_VALUE_STORE_LISTS": {
313 "type": "integer",
314 "example": 0
315 },
316 "REQUEST_QUEUE_READS": {
317 "type": "integer",
318 "example": 0
319 },
320 "REQUEST_QUEUE_WRITES": {
321 "type": "integer",
322 "example": 0
323 },
324 "DATA_TRANSFER_INTERNAL_GBYTES": {
325 "type": "integer",
326 "example": 0
327 },
328 "DATA_TRANSFER_EXTERNAL_GBYTES": {
329 "type": "integer",
330 "example": 0
331 },
332 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
333 "type": "integer",
334 "example": 0
335 },
336 "PROXY_SERPS": {
337 "type": "integer",
338 "example": 0
339 }
340 }
341 },
342 "usageTotalUsd": {
343 "type": "number",
344 "example": 0.00005
345 },
346 "usageUsd": {
347 "type": "object",
348 "properties": {
349 "ACTOR_COMPUTE_UNITS": {
350 "type": "integer",
351 "example": 0
352 },
353 "DATASET_READS": {
354 "type": "integer",
355 "example": 0
356 },
357 "DATASET_WRITES": {
358 "type": "integer",
359 "example": 0
360 },
361 "KEY_VALUE_STORE_READS": {
362 "type": "integer",
363 "example": 0
364 },
365 "KEY_VALUE_STORE_WRITES": {
366 "type": "number",
367 "example": 0.00005
368 },
369 "KEY_VALUE_STORE_LISTS": {
370 "type": "integer",
371 "example": 0
372 },
373 "REQUEST_QUEUE_READS": {
374 "type": "integer",
375 "example": 0
376 },
377 "REQUEST_QUEUE_WRITES": {
378 "type": "integer",
379 "example": 0
380 },
381 "DATA_TRANSFER_INTERNAL_GBYTES": {
382 "type": "integer",
383 "example": 0
384 },
385 "DATA_TRANSFER_EXTERNAL_GBYTES": {
386 "type": "integer",
387 "example": 0
388 },
389 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
390 "type": "integer",
391 "example": 0
392 },
393 "PROXY_SERPS": {
394 "type": "integer",
395 "example": 0
396 }
397 }
398 }
399 }
400 }
401 }
402 }
403 }
404 }
405}
LinkedIn Outreach Email Generator Agent OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for LinkedIn Outreach Email Generator Agent from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Pricing
Pricing model
Pay per eventThis Actor is paid per result. You are not charged for the Apify platform usage, but only a fixed price for each dataset of 1,000 items in the Actor outputs.
Price for Actor start
$0.100
Flat fee for starting an Actor run.
Price for completing the task
$0.400
Flat fee for completing the task.