
π Linkedin Job Scraper - Ultra Fast and Cheap
Pricing
$0.80 / 1,000 results

π Linkedin Job Scraper - Ultra Fast and Cheap
π Fast & Affordable LinkedIn Job Scraper with complete filters & enriched job data - qualifications, application deadline and more. Perfect for job hunters, recruiters and market analysis. Works well with n8n and MCPs
5.0 (1)
Pricing
$0.80 / 1,000 results
4
13
13
Last modified
7 days ago
You can access the π Linkedin Job Scraper - Ultra Fast and Cheap programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, youβll need an Apify account and your API token, found in Integrations settings in Apify Console.
{ "openapi": "3.0.1", "info": { "version": "1.0", "x-build-id": "VbZTtSSqMH4Btu7IS" }, "servers": [ { "url": "https://api.apify.com/v2" } ], "paths": { "/acts/patrickvicente~linkedin-job-scraper---ultra-fast-and-cheap/run-sync-get-dataset-items": { "post": { "operationId": "run-sync-get-dataset-items-patrickvicente-linkedin-job-scraper---ultra-fast-and-cheap", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } }, "/acts/patrickvicente~linkedin-job-scraper---ultra-fast-and-cheap/runs": { "post": { "operationId": "runs-sync-patrickvicente-linkedin-job-scraper---ultra-fast-and-cheap", "x-openai-isConsequential": false, "summary": "Executes an Actor and returns information about the initiated run in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/runsResponseSchema" } } } } } } }, "/acts/patrickvicente~linkedin-job-scraper---ultra-fast-and-cheap/run-sync": { "post": { "operationId": "run-sync-patrickvicente-linkedin-job-scraper---ultra-fast-and-cheap", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } } }, "components": { "schemas": { "inputSchema": { "type": "object", "properties": { "start_urls": { "title": "Start URLs", "type": "array", "description": "Optional: You need to open an incognito window and search for the job you want to scrape. Then copy the URL and paste it here. Note that we will use the keywords after scraping the start URLs", "items": { "type": "object", "required": [ "url" ], "properties": { "url": { "type": "string", "title": "URL of a web page", "format": "uri" } } } }, "keywords": { "title": "Job Keywords", "pattern": "^.+$", "maxLength": 200, "type": "string", "description": "Enter job keywords, titles, or skills to search for (e.g., 'software engineer', 'data scientist', 'marketing manager')" }, "location": { "title": "Job Location", "pattern": "^.+$", "maxLength": 100, "type": "string", "description": "Enter the location where you want to find jobs (e.g., 'San Francisco, CA', 'New York, NY', 'Remote')" }, "job_type": { "title": "Job Type", "minItems": 1, "maxItems": 5, "type": "array", "description": "Select the job types you're interested in", "items": { "type": "string", "enum": [ "full-time", "part-time", "contract", "internship" ], "enumTitles": [ "Full-Time", "Part-Time", "Contract", "Internship" ] } }, "experience_level": { "title": "Experience Level", "minItems": 1, "maxItems": 5, "type": "array", "description": "Select the experience levels you're interested in", "items": { "type": "string", "enum": [ "entry level", "associate", "mid-senior level", "director", "internship" ], "enumTitles": [ "Entry Level", "Associate", "Mid-Senior Level", "Director", "Internship" ] } }, "date_posted": { "title": "Date Posted", "enum": [ "any time", "past 24 hours", "past week", "past month" ], "type": "string", "description": "Filter jobs by when they were posted" }, "max_jobs": { "title": "Maximum Jobs to Scrape", "minimum": 20, "maximum": 1000, "type": "integer", "description": "Limit the number of jobs to scrape", "default": 100 }, "avoid_duplicates": { "title": "Avoid Duplicates", "type": "boolean", "description": "Enable persistent job tracking to skip already scraped jobs across multiple runs. Uses a named key-value store to remember job IDs, ensuring you never scrape the same job twice. Perfect for recurring automation workflows and maintaining clean datasets. Data persists in Apify Console > Key-value stores.", "default": false } } }, "runsResponseSchema": { "type": "object", "properties": { "data": { "type": "object", "properties": { "id": { "type": "string" }, "actId": { "type": "string" }, "userId": { "type": "string" }, "startedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "finishedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "status": { "type": "string", "example": "READY" }, "meta": { "type": "object", "properties": { "origin": { "type": "string", "example": "API" }, "userAgent": { "type": "string" } } }, "stats": { "type": "object", "properties": { "inputBodyLen": { "type": "integer", "example": 2000 }, "rebootCount": { "type": "integer", "example": 0 }, "restartCount": { "type": "integer", "example": 0 }, "resurrectCount": { "type": "integer", "example": 0 }, "computeUnits": { "type": "integer", "example": 0 } } }, "options": { "type": "object", "properties": { "build": { "type": "string", "example": "latest" }, "timeoutSecs": { "type": "integer", "example": 300 }, "memoryMbytes": { "type": "integer", "example": 1024 }, "diskMbytes": { "type": "integer", "example": 2048 } } }, "buildId": { "type": "string" }, "defaultKeyValueStoreId": { "type": "string" }, "defaultDatasetId": { "type": "string" }, "defaultRequestQueueId": { "type": "string" }, "buildNumber": { "type": "string", "example": "1.0.0" }, "containerUrl": { "type": "string" }, "usage": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "integer", "example": 1 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } }, "usageTotalUsd": { "type": "number", "example": 0.00005 }, "usageUsd": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "number", "example": 0.00005 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } } } } } } } }}
LinkedIn Job Data Extractor - Fast Recruitment Intelligence OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for π Linkedin Job Scraper - Ultra Fast and Cheap from the options below:
If youβd like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: