N8n Marketplace Analyzer avatar
N8n Marketplace Analyzer

Pricing

Pay per event

Go to Apify Store
N8n Marketplace Analyzer

N8n Marketplace Analyzer

Advanced n8n workflow scraper with analytics & ML training data. Get top nodes, categories, pricing insights, and fine-tuning datasets. Unlike basic scrapers, provides 10x value with analysis. Perfect for content creators, ML engineers & researchers. 1-10K workflows. By n8n community expert.

Pricing

Pay per event

Rating

0.0

(0)

Developer

LIAICHI MUSTAPHA

LIAICHI MUSTAPHA

Maintained by Community

Actor stats

0

Bookmarked

3

Total users

1

Monthly active users

2 days ago

Last modified

Share

๐Ÿš€ n8n Marketplace Intelligence & Analytics

The most comprehensive n8n workflow analyzer on Apify โ€“ Go beyond basic scraping with built-in analytics, professional insights, and ML training data generation.

Apify Actor Price


๐ŸŽฏ Why This Actor is Different

Most n8n scrapers just collect data and stop there. This actor goes further:

FeatureBasic ScrapersThis Actor
Scrape workflowsโœ…โœ…
Advanced analyticsโŒโœ…
ML training dataโŒโœ…
Creator insightsโŒโœ…
Complexity metricsโŒโœ…
Professional reportsโŒโœ…

Perfect for: Content creators, ML engineers, market researchers, product teams, and automation experts.


โšก Key Features

๐Ÿ” Smart Scraping

  • Collect 1 to 10,000 workflows from n8n marketplace
  • Optional category filtering (AI, DevOps, Marketing, etc.)
  • Rate-limited scraping (API-friendly)
  • Automatic pagination handling
  • Error recovery & retry logic

๐Ÿ“Š Advanced Analytics

Get comprehensive insights automatically:

  • Top 30 most-used nodes with usage percentages
  • Top 15 categories distribution
  • Pricing analysis (free vs paid breakdown)
  • Complexity metrics (simple to very complex)
  • Top 20 creators by workflow count
  • Most viewed workflows with engagement data

๐Ÿค– ML Training Data

Generate fine-tuning datasets in multiple formats:

  • Alpaca format (Llama, Mistral compatible)
  • OpenAI format (GPT fine-tuning ready)
  • 4,000+ training examples from real workflows
  • Clean, structured, ready to use

๐Ÿ“ˆ Professional Output

All data structured and export-ready:

  • Clean JSON format
  • Normalized fields
  • Comprehensive metadata
  • Multiple export options

๐Ÿ’ก Use Cases

๐Ÿ“š Content Creation

Find trending workflows โ†’ Analyze patterns โ†’ Create tutorials

Example: Discover that "AI + Telegram" workflows get 10x more views โ†’ Create tutorial series on AI chatbots

๐Ÿค– Machine Learning

Scrape workflows โ†’ Generate training data โ†’ Fine-tune LLM

Example: Build an AI that generates n8n workflows from natural language descriptions

๐Ÿ“Š Market Research

Scrape quarterly โ†’ Compare trends โ†’ Strategic insights

Example: Track which integrations are growing fastest to guide product decisions

๐Ÿ› ๏ธ Product Development

Analyze workflow patterns โ†’ Identify user needs โ†’ Build solutions

Example: See that 70% of workflows use HTTP Request โ†’ Prioritize API features


๐Ÿ“‚ Output Data

1๏ธโƒฃ Dataset (Structured Workflow Data)

Each workflow includes:

{
"id": 123,
"name": "AI Chatbot Workflow",
"description": "Build a Telegram bot using OpenAI...",
"totalViews": 50000,
"price": null,
"nodes": [
{
"name": "n8n-nodes-base.telegram",
"displayName": "Telegram",
"categories": ["Communication"]
}
],
"workflowCategories": [
{"name": "AI"},
{"name": "Communication"}
],
"user": {
"username": "creator123",
"name": "John Doe",
"verified": true
}
}

Download as: JSON, CSV, or Excel from the Dataset tab


2๏ธโƒฃ Key-Value Store (Analysis & ML Data)

๐Ÿ“ˆ analysis - Comprehensive Metrics

{
"metadata": {
"total_workflows": 1000,
"analysis_date": "2025-01-15T10:30:00Z"
},
"top_nodes": [
{"node": "HTTP Request", "count": 730, "percentage": 73.0},
{"node": "Code", "count": 520, "percentage": 52.0}
],
"top_categories": [
{"category": "AI", "count": 320},
{"category": "DevOps", "count": 180}
],
"pricing_analysis": {
"free_workflows": 860,
"paid_workflows": 140,
"free_percentage": 86.0,
"average_price": 12.50
},
"complexity_analysis": {
"average_nodes": 8.5,
"distribution": {
"simple_1_5": {"count": 400, "percentage": 40.0},
"medium_6_10": {"count": 350, "percentage": 35.0}
}
},
"top_creators": [
{
"username": "n8n_master",
"workflow_count": 45,
"total_views": 250000,
"verified": true
}
],
"top_viewed": [
{
"name": "Build Your First AI Agent",
"views": 150000,
"url": "https://n8n.io/workflows/123"
}
]
}

๐Ÿค– training_data_alpaca - ML Training Data (Alpaca Format)

[
{
"instruction": "Create an n8n workflow for: AI Email Assistant\n\nDescription: Automatically categorize and respond to emails using AI",
"input": "",
"output": "{\n \"nodes\": [\n {\"type\": \"Gmail Trigger\"},\n {\"type\": \"OpenAI Chat Model\"},\n {\"type\": \"Gmail\"}\n ]\n}"
}
]

๐Ÿค– training_data_openai - ML Training Data (OpenAI Format)

For GPT fine-tuning via OpenAI API



๐Ÿ“ธ Example Output

What You'll Get After Running

When your actor finishes, you'll find data in two places:


1๏ธโƒฃ Dataset Tab - Raw Workflow Data

Location: Run โ†’ Dataset tab

Sample workflow item:

{
"id": 6270,
"name": "Build Your First AI Agent",
"description": "Learn how to build an AI agent that can understand natural language, access tools, and make decisions...",
"totalViews": 156789,
"price": null,
"createdAt": "2024-03-15T10:30:00.000Z",
"updatedAt": "2024-12-01T15:45:00.000Z",
"nodes": [
{
"name": "n8n-nodes-base.telegram",
"displayName": "Telegram Trigger",
"nodeCategories": [
{"name": "Communication"},
{"name": "Trigger"}
]
},
{
"name": "@n8n/n8n-nodes-langchain.agent",
"displayName": "AI Agent",
"nodeCategories": [
{"name": "AI"},
{"name": "LangChain"}
]
},
{
"name": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"displayName": "OpenAI Chat Model",
"nodeCategories": [
{"name": "AI"},
{"name": "Language Models"}
]
}
],
"workflowCategories": [
{"name": "AI"},
{"name": "Communication"},
{"name": "AI Agent"}
],
"user": {
"username": "n8n_creator",
"name": "John Doe",
"verified": true,
"avatar": "https://gravatar.com/..."
}
}

โ†“ Download as:

  • JSON file
  • CSV spreadsheet
  • Excel workbook

2๏ธโƒฃ Key-Value Store - Analysis & Insights

Location: Run โ†’ Key-Value Stores โ†’ default โ†’ analysis

Sample analysis output:

{
"metadata": {
"total_workflows": 1000,
"analysis_date": "2025-01-15T14:30:00.000Z",
"scraper_version": "1.0.0"
},
"top_nodes": [
{
"node": "HTTP Request",
"count": 730,
"percentage": 73.0
},
{
"node": "Code",
"count": 520,
"percentage": 52.0
},
{
"node": "Set",
"count": 480,
"percentage": 48.0
},
{
"node": "IF",
"count": 450,
"percentage": 45.0
},
{
"node": "OpenAI Chat Model",
"count": 320,
"percentage": 32.0
}
],
"top_categories": [
{"category": "AI", "count": 320},
{"category": "DevOps", "count": 180},
{"category": "Marketing", "count": 165},
{"category": "Communication", "count": 140},
{"category": "Data Processing", "count": 125}
],
"pricing_analysis": {
"free_workflows": 860,
"paid_workflows": 140,
"free_percentage": 86.0,
"paid_percentage": 14.0,
"average_price": 12.50,
"price_range": {
"min": 5.00,
"max": 49.00
}
},
"complexity_analysis": {
"average_nodes": 8.5,
"min_nodes": 2,
"max_nodes": 45,
"distribution": {
"simple_1_5": {
"count": 400,
"percentage": 40.0
},
"medium_6_10": {
"count": 350,
"percentage": 35.0
},
"complex_11_20": {
"count": 180,
"percentage": 18.0
},
"very_complex_20plus": {
"count": 70,
"percentage": 7.0
}
}
},
"top_creators": [
{
"username": "n8n_master",
"name": "Sarah Johnson",
"workflow_count": 45,
"total_views": 250000,
"verified": true
},
{
"username": "automation_pro",
"name": "Mike Chen",
"workflow_count": 38,
"total_views": 180000,
"verified": true
},
{
"username": "workflow_wizard",
"name": "Emma Davis",
"workflow_count": 32,
"total_views": 145000,
"verified": false
}
],
"top_viewed": [
{
"name": "Build Your First AI Agent",
"views": 156789,
"price": null,
"creator": "n8n_creator",
"url": "https://n8n.io/workflows/6270"
},
{
"name": "Automated Social Media Manager",
"views": 142500,
"price": 19.99,
"creator": "marketing_guru",
"url": "https://n8n.io/workflows/5834"
},
{
"name": "Email Processing with AI",
"views": 128000,
"price": null,
"creator": "ai_specialist",
"url": "https://n8n.io/workflows/4921"
}
]
}

โ†“ Download from Key-Value Store as JSON


3๏ธโƒฃ ML Training Data (Optional)

Location: Run โ†’ Key-Value Stores โ†’ default โ†’ training_data_alpaca

When enabled (generateMLData: true), you'll get:

[
{
"instruction": "Create an n8n workflow for: AI Email Assistant\n\nDescription: Automatically categorize and respond to emails using AI",
"input": "",
"output": "{\n \"nodes\": [\n {\n \"name\": \"Gmail Trigger\",\n \"type\": \"Gmail Trigger\",\n \"category\": [\"Communication\", \"Trigger\"]\n },\n {\n \"name\": \"OpenAI\",\n \"type\": \"OpenAI Chat Model\",\n \"category\": [\"AI\", \"Language Models\"]\n },\n {\n \"name\": \"Gmail\",\n \"type\": \"Gmail\",\n \"category\": [\"Communication\"]\n }\n ],\n \"node_count\": 3,\n \"node_types\": [\"Gmail Trigger\", \"OpenAI Chat Model\", \"Gmail\"]\n}"
},
{
"instruction": "Create an n8n workflow for: Social Media Scheduler\n\nDescription: Schedule and post content across multiple social media platforms",
"input": "",
"output": "{\n \"nodes\": [\n {\n \"name\": \"Schedule Trigger\",\n \"type\": \"Schedule Trigger\",\n \"category\": [\"Core Nodes\", \"Trigger\"]\n },\n {\n \"name\": \"Google Sheets\",\n \"type\": \"Google Sheets\",\n \"category\": [\"Productivity\"]\n },\n {\n \"name\": \"Twitter\",\n \"type\": \"Twitter\",\n \"category\": [\"Communication\", \"Social Media\"]\n },\n {\n \"name\": \"LinkedIn\",\n \"type\": \"LinkedIn\",\n \"category\": [\"Communication\", \"Social Media\"]\n }\n ],\n \"node_count\": 4,\n \"node_types\": [\"Schedule Trigger\", \"Google Sheets\", \"Twitter\", \"LinkedIn\"]\n}"
}
]

โ†“ Ready for fine-tuning Llama 3, Mistral, or GPT!


๐Ÿ“Š Visual Guide

After your actor runs, you'll see:

Run #12345 (Succeeded)
โ”œโ”€โ”€ ๐Ÿ“Š Dataset (1,000 items)
โ”‚ โ””โ”€โ”€ Download as JSON/CSV/Excel
โ”‚
โ”œโ”€โ”€ ๐Ÿ—‚๏ธ Key-Value Stores
โ”‚ โ”œโ”€โ”€ analysis.json โ† Analytics
โ”‚ โ”œโ”€โ”€ training_data_alpaca.json โ† ML data (Alpaca)
โ”‚ โ””โ”€โ”€ training_data_openai.jsonl โ† ML data (OpenAI)
โ”‚
โ””โ”€โ”€ ๐Ÿ“ Log
โ””โ”€โ”€ Execution details

๐ŸŽฏ Quick Access

To download your data:

  1. Go to your run page
  2. Click "Dataset" tab โ†’ Download workflows
  3. Click "Key-Value Stores" tab โ†’ Download analysis
  4. Export format: Choose JSON, CSV, or Excel

๐Ÿ’ก What You Can Do With This Data

Dataset (Raw workflows):

  • โœ… Import into spreadsheet
  • โœ… Build workflow library
  • โœ… Feed into database
  • โœ… Create dashboards

Analysis (Insights):

  • โœ… Create reports
  • โœ… Identify trends
  • โœ… Guide content strategy
  • โœ… Support business decisions

ML Training Data:

  • โœ… Fine-tune LLMs
  • โœ… Build AI assistants
  • โœ… Train workflow generators
  • โœ… Create recommendation systems

โš™๏ธ Input Configuration

Analysis Mode

Choose your level of depth:

ModeDescriptionUse Case
scrape_onlyJust workflow dataQuick data collection
scrape_and_analyzeData + insights โญMost common use case
full_with_mlEverything + ML dataAI/ML projects

Parameters

{
"mode": "scrape_and_analyze",
"maxWorkflows": 1000,
"category": "AI",
"generateMLData": false
}
ParameterTypeDefaultDescription
modeStringscrape_and_analyzeAnalysis mode (see above)
maxWorkflowsInteger1000Max workflows to scrape (1-10,000)
categoryStringnullOptional category filter (e.g., "AI")
generateMLDataBooleanfalseGenerate ML training datasets

๐ŸŽ“ Example Inputs

Quick Start (50 workflows)

{
"mode": "scrape_only",
"maxWorkflows": 50
}

Full Analysis (1,000 workflows)

{
"mode": "scrape_and_analyze",
"maxWorkflows": 1000
}

Category-Specific with ML Data

{
"mode": "full_with_ml",
"maxWorkflows": 500,
"category": "AI",
"generateMLData": true
}

Maximum Analysis (All Workflows)

{
"mode": "scrape_and_analyze",
"maxWorkflows": 10000
}

๐Ÿ’ฐ Pricing

$0.50 per 1,000 workflows scraped

What You Get for $0.50:

  • โœ… 1,000 complete workflow records
  • โœ… Comprehensive analysis included
  • โœ… All insights and metrics
  • โœ… Optional ML training data

Cost Examples:

  • 50 workflows: ~$0.03
  • 500 workflows: ~$0.25
  • 1,000 workflows: $0.50
  • 5,000 workflows: $2.50

Compare to Basic Scrapers ($0.25/1K):

  • โŒ Data only
  • โŒ No analysis
  • โŒ No ML data
  • โŒ No insights

This actor: 2x the price, 10x the value! ๐ŸŽฏ


๐Ÿค– API & Automation

Trigger this actor programmatically and integrate with:

  • n8n (meta!)
  • Make.com
  • Zapier
  • Custom scripts
  • Cron jobs

Node.js Example:

import { ApifyClient } from 'apify-client';
const client = new ApifyClient({ token: 'YOUR_API_TOKEN' });
const run = await client.actor('YOUR_USERNAME/n8n-marketplace-analyzer').call({
mode: 'scrape_and_analyze',
maxWorkflows: 1000
});
const dataset = await client.dataset(run.defaultDatasetId).listItems();
console.log(dataset.items);

Python Example:

from apify_client import ApifyClient
client = ApifyClient('YOUR_API_TOKEN')
run = client.actor('YOUR_USERNAME/n8n-marketplace-analyzer').call(
run_input={
'mode': 'scrape_and_analyze',
'maxWorkflows': 1000
}
)
dataset = client.dataset(run['defaultDatasetId']).list_items()
print(dataset.items)

cURL Example:

curl -X POST https://api.apify.com/v2/acts/YOUR_USERNAME~n8n-marketplace-analyzer/runs \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"mode": "scrape_and_analyze",
"maxWorkflows": 1000
}'

๐Ÿ“Š Performance & Efficiency

  • Fast: Scrapes 1,000 workflows in ~2-3 minutes
  • Efficient: Low compute usage (no browser needed)
  • Reliable: Error handling and automatic retries
  • Scalable: Handle 1 to 10,000 workflows easily
  • Cost-effective: Uses minimal Apify compute units

๐ŸŽฏ Real-World Applications

For Content Creators

Weekly Workflow:

  1. Run actor with maxWorkflows: 500
  2. Analyze top trending workflows
  3. Identify content gaps
  4. Create tutorial series
  5. Repeat weekly

Result: Always know what's hot in n8n community

For ML Engineers

Dataset Creation:

  1. Run with full_with_ml mode
  2. Download training_data_alpaca.json
  3. Fine-tune Llama 3 or Mistral
  4. Build AI workflow generator
  5. Publish as SaaS

Result: AI-powered n8n workflow assistant

For Market Researchers

Quarterly Analysis:

  1. Scrape all workflows (10,000)
  2. Export analysis to CSV
  3. Create visualizations
  4. Compare to last quarter
  5. Present insights to stakeholders

Result: Data-driven automation strategy

For Product Teams

Feature Prioritization:

  1. Analyze most-used nodes
  2. Identify integration gaps
  3. Study workflow complexity
  4. Plan roadmap
  5. Validate with data

Result: Build what users actually need


๐Ÿ› ๏ธ Technical Details

Built With:

  • Apify SDK - Actor framework
  • Python 3.11 - Core language
  • Requests - HTTP client
  • asyncio - Async operations

Data Sources:

  • n8n.io public API
  • n8n marketplace workflows
  • Creator profiles
  • Usage statistics

Output Formats:

  • JSON (structured)
  • CSV (spreadsheets)
  • Excel (business reports)

๐Ÿ”„ Workflow Integration

Use with n8n (Ironic!)

Trigger: Schedule (weekly)
โ†“
Action: Run Apify Actor
โ†“
Action: Get Dataset Items
โ†“
Action: Analyze Trends
โ†“
Action: Send Slack Notification

Use with Make.com

Schedule โ†’ Apify โ†’ Google Sheets โ†’ Email Report

Use with Zapier

New Actor Run โ†’ Get Results โ†’ Update Airtable

๐Ÿ“ˆ Success Stories

"Used this to identify trending workflow patterns for my n8n tutorial series. Views increased 3x!"

โ€” Content Creator

"Generated 5,000 training examples and fine-tuned an LLM to generate workflows. Game changer!"

โ€” ML Engineer

"Quarterly reports from this actor guide our entire automation strategy."

โ€” Product Manager


๐Ÿ’ฌ Support & Custom Development

Need Help?

Custom Services Available:

  • ๐ŸŽจ Custom analysis reports
  • ๐Ÿค– ML model fine-tuning
  • ๐Ÿ”ง Bespoke scrapers
  • ๐Ÿ“Š Data visualization
  • ๐Ÿš€ Automation consulting

๐ŸŽ“ About the Creator

Built by MuLIAICHI, an AI Engineer and n8n community contributor with:

  • ๐Ÿ“š Popular tutorial website (n8nlearninghub.com)
  • ๐Ÿ”ฌ Open-source projects on GitHub
  • ๐Ÿค– Expertise in LLM fine-tuning
  • ๐ŸŽฏ Deep n8n automation knowledge

Other Projects:

  • n8n Workflow Analysis Project - Open-source analysis of 6,000+ workflows
  • FreelancerBot Pro - AI-powered freelancing assistant
  • n8n tutorial series - Weekly educational content

๐Ÿš€ Get Started Now

  1. Try it free with Apify's free tier ($5 credit)
  2. Run a test with 50 workflows
  3. See the insights in minutes
  4. Scale up as needed

Quick Start:

{
"mode": "scrape_and_analyze",
"maxWorkflows": 100
}

Click "Try for Free" above to start! ๐ŸŽ‰


โญ Why Choose This Actor?

โœ… Most comprehensive - More features than any competitor โœ… Professional quality - Production-ready output โœ… Great value - 10x features for 2x price โœ… Active support - Built by community expert โœ… Proven results - Based on 6,000+ workflow analysis โœ… Regular updates - Maintained and improved


๐Ÿ“‹ Comparison Table

FeatureBasic ScrapersThis ActorPremium
Scrape workflowsโœ…โœ…โœ…
Category filteringโœ…โœ…โœ…
AnalyticsโŒโœ…โœ…
ML training dataโŒโœ…โœ…
Creator insightsโŒโœ…โœ…
Complexity analysisโŒโœ…โœ…
Price per 1K$0.25$0.50$2.00+
Value Scoreโญโญโญโญโญโญโญโญโญโญ


๐Ÿ“œ License & Terms

  • License: Apache-2.0
  • Terms: Follow Apify Terms of Service
  • Usage: Respect n8n's API rate limits
  • Data: Public n8n marketplace data only

๐ŸŽ‰ Ready to Get Insights?

Try it now with 50 free workflows!

This actor transforms raw workflow data into actionable intelligence. Perfect for anyone serious about n8n automation.


โญ Star this actor if you find it useful!

๐Ÿ’ฌ Questions? Issues? Contact us anytime!


Last updated: January 2025 Version: 1.0.0 Maintained by: MuLIAICHI (mustaphaliaichi@gmail.com)