
LinkedIn Posts Engagers (Likers and Commenters)
1 day trial then $30.00/month - No credit card required now

LinkedIn Posts Engagers (Likers and Commenters)
1 day trial then $30.00/month - No credit card required now
get likers and commenters from LinkedIn posts'
Actor Metrics
13 monthly users
No reviews yet
3 bookmarks
68% runs succeeded
2.7 days response time
Created in Mar 2025
Modified a day ago
You can access the LinkedIn Posts Engagers (Likers and Commenters) programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "3.9",
5 "x-build-id": "pQfLBVvpiW1Zmimpj"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/scraping_solutions~linkedin-posts-engagers-likers-and-commenters/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-scraping_solutions-linkedin-posts-engagers-likers-and-commenters",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/scraping_solutions~linkedin-posts-engagers-likers-and-commenters/runs": {
50 "post": {
51 "operationId": "runs-sync-scraping_solutions-linkedin-posts-engagers-likers-and-commenters",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/scraping_solutions~linkedin-posts-engagers-likers-and-commenters/run-sync": {
93 "post": {
94 "operationId": "run-sync-scraping_solutions-linkedin-posts-engagers-likers-and-commenters",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "url",
135 "start",
136 "iterations",
137 "type"
138 ],
139 "properties": {
140 "url": {
141 "title": "URL of the post",
142 "type": "string",
143 "description": "The URL of post you want to get the likers from."
144 },
145 "start": {
146 "title": "start page",
147 "minimum": 1,
148 "type": "integer",
149 "description": "sum start+ respond['count'] for the next page",
150 "default": 0
151 },
152 "iterations": {
153 "title": "number pages to scraping",
154 "minimum": 1,
155 "maximum": 10,
156 "type": "integer",
157 "description": "number of pages for scraping, 1-10 are the allowed values",
158 "default": 1
159 },
160 "type": {
161 "title": "likers/commenters",
162 "type": "string",
163 "description": "Defines whether to extract users who liked the post (likers) or users who commented (commenters)."
164 }
165 }
166 },
167 "runsResponseSchema": {
168 "type": "object",
169 "properties": {
170 "data": {
171 "type": "object",
172 "properties": {
173 "id": {
174 "type": "string"
175 },
176 "actId": {
177 "type": "string"
178 },
179 "userId": {
180 "type": "string"
181 },
182 "startedAt": {
183 "type": "string",
184 "format": "date-time",
185 "example": "2025-01-08T00:00:00.000Z"
186 },
187 "finishedAt": {
188 "type": "string",
189 "format": "date-time",
190 "example": "2025-01-08T00:00:00.000Z"
191 },
192 "status": {
193 "type": "string",
194 "example": "READY"
195 },
196 "meta": {
197 "type": "object",
198 "properties": {
199 "origin": {
200 "type": "string",
201 "example": "API"
202 },
203 "userAgent": {
204 "type": "string"
205 }
206 }
207 },
208 "stats": {
209 "type": "object",
210 "properties": {
211 "inputBodyLen": {
212 "type": "integer",
213 "example": 2000
214 },
215 "rebootCount": {
216 "type": "integer",
217 "example": 0
218 },
219 "restartCount": {
220 "type": "integer",
221 "example": 0
222 },
223 "resurrectCount": {
224 "type": "integer",
225 "example": 0
226 },
227 "computeUnits": {
228 "type": "integer",
229 "example": 0
230 }
231 }
232 },
233 "options": {
234 "type": "object",
235 "properties": {
236 "build": {
237 "type": "string",
238 "example": "latest"
239 },
240 "timeoutSecs": {
241 "type": "integer",
242 "example": 300
243 },
244 "memoryMbytes": {
245 "type": "integer",
246 "example": 1024
247 },
248 "diskMbytes": {
249 "type": "integer",
250 "example": 2048
251 }
252 }
253 },
254 "buildId": {
255 "type": "string"
256 },
257 "defaultKeyValueStoreId": {
258 "type": "string"
259 },
260 "defaultDatasetId": {
261 "type": "string"
262 },
263 "defaultRequestQueueId": {
264 "type": "string"
265 },
266 "buildNumber": {
267 "type": "string",
268 "example": "1.0.0"
269 },
270 "containerUrl": {
271 "type": "string"
272 },
273 "usage": {
274 "type": "object",
275 "properties": {
276 "ACTOR_COMPUTE_UNITS": {
277 "type": "integer",
278 "example": 0
279 },
280 "DATASET_READS": {
281 "type": "integer",
282 "example": 0
283 },
284 "DATASET_WRITES": {
285 "type": "integer",
286 "example": 0
287 },
288 "KEY_VALUE_STORE_READS": {
289 "type": "integer",
290 "example": 0
291 },
292 "KEY_VALUE_STORE_WRITES": {
293 "type": "integer",
294 "example": 1
295 },
296 "KEY_VALUE_STORE_LISTS": {
297 "type": "integer",
298 "example": 0
299 },
300 "REQUEST_QUEUE_READS": {
301 "type": "integer",
302 "example": 0
303 },
304 "REQUEST_QUEUE_WRITES": {
305 "type": "integer",
306 "example": 0
307 },
308 "DATA_TRANSFER_INTERNAL_GBYTES": {
309 "type": "integer",
310 "example": 0
311 },
312 "DATA_TRANSFER_EXTERNAL_GBYTES": {
313 "type": "integer",
314 "example": 0
315 },
316 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
317 "type": "integer",
318 "example": 0
319 },
320 "PROXY_SERPS": {
321 "type": "integer",
322 "example": 0
323 }
324 }
325 },
326 "usageTotalUsd": {
327 "type": "number",
328 "example": 0.00005
329 },
330 "usageUsd": {
331 "type": "object",
332 "properties": {
333 "ACTOR_COMPUTE_UNITS": {
334 "type": "integer",
335 "example": 0
336 },
337 "DATASET_READS": {
338 "type": "integer",
339 "example": 0
340 },
341 "DATASET_WRITES": {
342 "type": "integer",
343 "example": 0
344 },
345 "KEY_VALUE_STORE_READS": {
346 "type": "integer",
347 "example": 0
348 },
349 "KEY_VALUE_STORE_WRITES": {
350 "type": "number",
351 "example": 0.00005
352 },
353 "KEY_VALUE_STORE_LISTS": {
354 "type": "integer",
355 "example": 0
356 },
357 "REQUEST_QUEUE_READS": {
358 "type": "integer",
359 "example": 0
360 },
361 "REQUEST_QUEUE_WRITES": {
362 "type": "integer",
363 "example": 0
364 },
365 "DATA_TRANSFER_INTERNAL_GBYTES": {
366 "type": "integer",
367 "example": 0
368 },
369 "DATA_TRANSFER_EXTERNAL_GBYTES": {
370 "type": "integer",
371 "example": 0
372 },
373 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
374 "type": "integer",
375 "example": 0
376 },
377 "PROXY_SERPS": {
378 "type": "integer",
379 "example": 0
380 }
381 }
382 }
383 }
384 }
385 }
386 }
387 }
388 }
389}
LinkedIn Posts Engagers (Likers and Commenters) OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for LinkedIn Posts Engagers (Likers and Commenters) from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: