Reddit Story Video Maker avatar
Reddit Story Video Maker

Deprecated

Pricing

Pay per usage

Go to Store
Reddit Story Video Maker

Reddit Story Video Maker

Deprecated

Developed by

Steafanie Braid

Steafanie Braid

Maintained by Community

Finds the most successful posts from reddit and turns them into a short format video script that can be converted into a video

0.0 (0)

Pricing

Pay per usage

0

Total users

6

Monthly users

6

Runs succeeded

0%

Last modified

3 months ago

You can access the Reddit Story Video Maker programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.

{
"openapi": "3.0.1",
"info": {
"version": "0.1",
"x-build-id": "iC12sdaHhXCm5G6Sm"
},
"servers": [
{
"url": "https://api.apify.com/v2"
}
],
"paths": {
"/acts/stefanie-rink~reddit-story-video-maker/run-sync-get-dataset-items": {
"post": {
"operationId": "run-sync-get-dataset-items-stefanie-rink-reddit-story-video-maker",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
},
"/acts/stefanie-rink~reddit-story-video-maker/runs": {
"post": {
"operationId": "runs-sync-stefanie-rink-reddit-story-video-maker",
"x-openai-isConsequential": false,
"summary": "Executes an Actor and returns information about the initiated run in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/runsResponseSchema"
}
}
}
}
}
}
},
"/acts/stefanie-rink~reddit-story-video-maker/run-sync": {
"post": {
"operationId": "run-sync-stefanie-rink-reddit-story-video-maker",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
}
},
"components": {
"schemas": {
"inputSchema": {
"type": "object",
"required": [
"llmProvider"
],
"properties": {
"subreddits": {
"title": "Subreddits",
"type": "array",
"description": "List of subreddits to scrape. You can include 'r/' prefix but it's not required.",
"default": [
"amiwrong",
"Comebacks",
"nosleep",
"shortscarystories",
"PointlessStories",
"tifu",
"sillyconfession",
"Paranormal"
]
},
"scriptPrompt": {
"title": "Script Generation Prompt",
"type": "string",
"description": "Custom prompt for script generation. If not provided, a default prompt will be used that creates dramatic, short-form video scripts."
},
"llmProvider": {
"title": "LLM Provider",
"enum": [
"openai",
"anthropic",
"google"
],
"type": "string",
"description": "The LLM provider to use for script generation",
"default": "google"
},
"openaiApiKey": {
"title": "OpenAI API Key",
"type": "string",
"description": "Your OpenAI API key (required if using OpenAI provider)"
},
"anthropicApiKey": {
"title": "Anthropic API Key",
"type": "string",
"description": "Your Anthropic API key (required if using Anthropic provider)"
},
"googleApiKey": {
"title": "Google API Key",
"type": "string",
"description": "Your Google API key (required if using Google provider)"
},
"apifyApiKey": {
"title": "Apify API Token",
"type": "string",
"description": "Your Apify API token for running the Reddit Subreddit Scraper. If not provided, will use the environment variable APIFY_API_TOKEN or APIFY_TOKEN."
},
"modelName": {
"title": "LLM Model",
"enum": [
"gpt-4o",
"gpt-4o-mini",
"o1",
"o3-mini",
"gpt-3.5-turbo",
"claude-3-haiku-20240307",
"claude-3-sonnet-20240229",
"claude-3-opus-20240229",
"gemini-pro",
"gemini-1.5-pro",
"gemini-1.5-flash"
],
"type": "string",
"description": "Specific model to use from the selected provider. Note: When running on Apify, only gpt-4o, gpt-4o-mini, o1, o3-mini are officially supported.",
"default": "gemini-2.0-flash"
},
"maxPosts": {
"title": "Maximum Posts",
"minimum": 5,
"maximum": 1000,
"type": "integer",
"description": "Maximum number of posts to scrape per subreddit",
"default": 50
},
"numScripts": {
"title": "Number of Scripts",
"minimum": 1,
"maximum": 20,
"type": "integer",
"description": "Number of top posts to generate scripts for (based on value score)",
"default": 5
},
"sortBy": {
"title": "Sort Posts By",
"enum": [
"top",
"hot",
"new",
"rising"
],
"type": "string",
"description": "How to sort the Reddit posts",
"default": "top"
},
"timeframe": {
"title": "Timeframe",
"enum": [
"hour",
"day",
"week",
"month",
"year",
"all"
],
"type": "string",
"description": "Timeframe for posts (only applies to 'top' sorting)",
"default": "month"
},
"debug": {
"title": "Debug Mode",
"type": "boolean",
"description": "Enable debug logging",
"default": false
}
}
},
"runsResponseSchema": {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"actId": {
"type": "string"
},
"userId": {
"type": "string"
},
"startedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"finishedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"status": {
"type": "string",
"example": "READY"
},
"meta": {
"type": "object",
"properties": {
"origin": {
"type": "string",
"example": "API"
},
"userAgent": {
"type": "string"
}
}
},
"stats": {
"type": "object",
"properties": {
"inputBodyLen": {
"type": "integer",
"example": 2000
},
"rebootCount": {
"type": "integer",
"example": 0
},
"restartCount": {
"type": "integer",
"example": 0
},
"resurrectCount": {
"type": "integer",
"example": 0
},
"computeUnits": {
"type": "integer",
"example": 0
}
}
},
"options": {
"type": "object",
"properties": {
"build": {
"type": "string",
"example": "latest"
},
"timeoutSecs": {
"type": "integer",
"example": 300
},
"memoryMbytes": {
"type": "integer",
"example": 1024
},
"diskMbytes": {
"type": "integer",
"example": 2048
}
}
},
"buildId": {
"type": "string"
},
"defaultKeyValueStoreId": {
"type": "string"
},
"defaultDatasetId": {
"type": "string"
},
"defaultRequestQueueId": {
"type": "string"
},
"buildNumber": {
"type": "string",
"example": "1.0.0"
},
"containerUrl": {
"type": "string"
},
"usage": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "integer",
"example": 1
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
},
"usageTotalUsd": {
"type": "number",
"example": 0.00005
},
"usageUsd": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "number",
"example": 0.00005
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
}
}
}
}
}
}
}
}

Reddit Story Video Maker OpenAPI definition

OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.

OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.

By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.

You can download the OpenAPI definitions for Reddit Story Video Maker from the options below:

If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.

You can also check out our other API clients: