Web Scraper Task
Pricing
Pay per usage
Web Scraper Task
0.0 (0)
Pricing
Pay per usage
1
Monthly users
7
Runs succeeded
>99%
Last modified
2 years ago
You can access the Web Scraper Task programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1# Start Server-Sent Events (SSE) session and keep it running
2curl "https://actors-mcp-server.apify.actor/sse?token=<YOUR_API_TOKEN>&actors=undrtkr984/web-scraper-task"
3
4# Session id example output:
5# event: endpoint
6# data: /message?sessionId=9d820491-38d4-4c7d-bb6a-3b7dc542f1fa
Using Web Scraper Task via Model Context Protocol (MCP) server
MCP server lets you use Web Scraper Task within your AI workflows. Send API requests to trigger actions and receive real-time results. Take the received sessionId
and use it to communicate with the MCP server. The message starts the Web Scraper Task Actor with the provided input.
1curl -X POST "https://actors-mcp-server.apify.actor/message?token=<YOUR_API_TOKEN>&session_id=<SESSION_ID>" -H "Content-Type: application/json" -d '{
2 "jsonrpc": "2.0",
3 "id": 1,
4 "method": "tools/call",
5 "params": {
6 "arguments": {
7 "runMode": "DEVELOPMENT",
8 "startUrls": [
9 {
10 "url": "https://crawlee.dev"
11 }
12 ],
13 "linkSelector": "a[href]",
14 "globs": [
15 {
16 "glob": "https://crawlee.dev/*/*"
17 }
18 ],
19 "pseudoUrls": [],
20 "pageFunction": "// The function accepts a single argument: the \\"context\\" object.\\n// For a complete list of its properties and functions,\\n// see https://apify.com/apify/web-scraper#page-function \\nasync function pageFunction(context) {\\n // This statement works as a breakpoint when you'\''re trying to debug your code. Works only with Run mode: DEVELOPMENT!\\n // debugger; \\n\\n // jQuery is handy for finding DOM elements and extracting data from them.\\n // To use it, make sure to enable the \\"Inject jQuery\\" option.\\n const $ = context.jQuery;\\n const pageTitle = $('\''title'\'').first().text();\\n const h1 = $('\''h1'\'').first().text();\\n const first_h2 = $('\''h2'\'').first().text();\\n const random_text_from_the_page = $('\''p'\'').first().text();\\n\\n\\n // Print some information to actor log\\n context.log.info(`URL: ${context.request.url}, TITLE: ${pageTitle}`);\\n\\n // Manually add a new page to the queue for scraping.\\n await context.enqueueRequest({ url: '\''http://www.example.com'\'' });\\n\\n // Return an object with the data extracted from the page.\\n // It will be stored to the resulting dataset.\\n return {\\n url: context.request.url,\\n pageTitle,\\n h1,\\n first_h2,\\n random_text_from_the_page\\n };\\n}",
21 "proxyConfiguration": {
22 "useApifyProxy": true
23 },
24 "initialCookies": [],
25 "waitUntil": [
26 "networkidle2"
27 ],
28 "preNavigationHooks": "// We need to return array of (possibly async) functions here.\\n// The functions accept two arguments: the \\"crawlingContext\\" object\\n// and \\"gotoOptions\\".\\n[\\n async (crawlingContext, gotoOptions) => {\\n // ...\\n },\\n]\\n",
29 "postNavigationHooks": "// We need to return array of (possibly async) functions here.\\n// The functions accept a single argument: the \\"crawlingContext\\" object.\\n[\\n async (crawlingContext) => {\\n // ...\\n },\\n]",
30 "breakpointLocation": "NONE",
31 "customData": {}
32},
33 "name": "undrtkr984/web-scraper-task"
34 }
35}'
The response should be: Accepted
. You should received response via SSE (JSON) as:
1event: message
2data: {
3 "result": {
4 "content": [
5 {
6 "type": "text",
7 "text": "ACTOR_RESPONSE"
8 }
9 ]
10 }
11}
Configure local MCP Server via standard input/output for Web Scraper Task
You can connect to the MCP Server using clients like ClaudeDesktop and LibreChat or build your own. The server can run both locally and remotely, giving you full flexibility. Set up the server in the client configuration as follows:
1{
2 "mcpServers": {
3 "actors-mcp-server": {
4 "command": "npx",
5 "args": [
6 "-y",
7 "@apify/actors-mcp-server",
8 "--actors",
9 "undrtkr984/web-scraper-task"
10 ],
11 "env": {
12 "APIFY_TOKEN": "<YOUR_API_TOKEN>"
13 }
14 }
15 }
16}
You can further access the MCP client through the Tester MCP Client, a chat user interface to interact with the server.
To get started, check out the documentation and example clients. If you are interested in learning more about our MCP server, check out our blog post.
Pricing
Pricing model
Pay per usageThis Actor is paid per platform usage. The Actor is free to use, and you only pay for the Apify platform usage.