
Real-time knowledge for LLMs
No credit card required

Real-time knowledge for LLMs
No credit card required
Unlock the Full Potential of Your LLM with Real-Time Web Knowledge! Say goodbye to outdated responses, misinformation, and hallucinations. Now you can ground your Language Model with the freshest information from the web. NO API NEEDED!
You can access the Real-time knowledge for LLMs programmatically from your own applications by using the Apify API. You can choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "IcyWhLrABqaoZ4X2V"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/ai-developer~real-time-knowledge-for-llms/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-ai-developer-real-time-knowledge-for-llms",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/ai-developer~real-time-knowledge-for-llms/runs": {
50 "post": {
51 "operationId": "runs-sync-ai-developer-real-time-knowledge-for-llms",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/ai-developer~real-time-knowledge-for-llms/run-sync": {
93 "post": {
94 "operationId": "run-sync-ai-developer-real-time-knowledge-for-llms",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "search"
135 ],
136 "properties": {
137 "search": {
138 "title": "Search term",
139 "type": "string",
140 "description": "Any data or information you want to search for and give access to your LLM"
141 }
142 }
143 },
144 "runsResponseSchema": {
145 "type": "object",
146 "properties": {
147 "data": {
148 "type": "object",
149 "properties": {
150 "id": {
151 "type": "string"
152 },
153 "actId": {
154 "type": "string"
155 },
156 "userId": {
157 "type": "string"
158 },
159 "startedAt": {
160 "type": "string",
161 "format": "date-time",
162 "example": "2025-01-08T00:00:00.000Z"
163 },
164 "finishedAt": {
165 "type": "string",
166 "format": "date-time",
167 "example": "2025-01-08T00:00:00.000Z"
168 },
169 "status": {
170 "type": "string",
171 "example": "READY"
172 },
173 "meta": {
174 "type": "object",
175 "properties": {
176 "origin": {
177 "type": "string",
178 "example": "API"
179 },
180 "userAgent": {
181 "type": "string"
182 }
183 }
184 },
185 "stats": {
186 "type": "object",
187 "properties": {
188 "inputBodyLen": {
189 "type": "integer",
190 "example": 2000
191 },
192 "rebootCount": {
193 "type": "integer",
194 "example": 0
195 },
196 "restartCount": {
197 "type": "integer",
198 "example": 0
199 },
200 "resurrectCount": {
201 "type": "integer",
202 "example": 0
203 },
204 "computeUnits": {
205 "type": "integer",
206 "example": 0
207 }
208 }
209 },
210 "options": {
211 "type": "object",
212 "properties": {
213 "build": {
214 "type": "string",
215 "example": "latest"
216 },
217 "timeoutSecs": {
218 "type": "integer",
219 "example": 300
220 },
221 "memoryMbytes": {
222 "type": "integer",
223 "example": 1024
224 },
225 "diskMbytes": {
226 "type": "integer",
227 "example": 2048
228 }
229 }
230 },
231 "buildId": {
232 "type": "string"
233 },
234 "defaultKeyValueStoreId": {
235 "type": "string"
236 },
237 "defaultDatasetId": {
238 "type": "string"
239 },
240 "defaultRequestQueueId": {
241 "type": "string"
242 },
243 "buildNumber": {
244 "type": "string",
245 "example": "1.0.0"
246 },
247 "containerUrl": {
248 "type": "string"
249 },
250 "usage": {
251 "type": "object",
252 "properties": {
253 "ACTOR_COMPUTE_UNITS": {
254 "type": "integer",
255 "example": 0
256 },
257 "DATASET_READS": {
258 "type": "integer",
259 "example": 0
260 },
261 "DATASET_WRITES": {
262 "type": "integer",
263 "example": 0
264 },
265 "KEY_VALUE_STORE_READS": {
266 "type": "integer",
267 "example": 0
268 },
269 "KEY_VALUE_STORE_WRITES": {
270 "type": "integer",
271 "example": 1
272 },
273 "KEY_VALUE_STORE_LISTS": {
274 "type": "integer",
275 "example": 0
276 },
277 "REQUEST_QUEUE_READS": {
278 "type": "integer",
279 "example": 0
280 },
281 "REQUEST_QUEUE_WRITES": {
282 "type": "integer",
283 "example": 0
284 },
285 "DATA_TRANSFER_INTERNAL_GBYTES": {
286 "type": "integer",
287 "example": 0
288 },
289 "DATA_TRANSFER_EXTERNAL_GBYTES": {
290 "type": "integer",
291 "example": 0
292 },
293 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
294 "type": "integer",
295 "example": 0
296 },
297 "PROXY_SERPS": {
298 "type": "integer",
299 "example": 0
300 }
301 }
302 },
303 "usageTotalUsd": {
304 "type": "number",
305 "example": 0.00005
306 },
307 "usageUsd": {
308 "type": "object",
309 "properties": {
310 "ACTOR_COMPUTE_UNITS": {
311 "type": "integer",
312 "example": 0
313 },
314 "DATASET_READS": {
315 "type": "integer",
316 "example": 0
317 },
318 "DATASET_WRITES": {
319 "type": "integer",
320 "example": 0
321 },
322 "KEY_VALUE_STORE_READS": {
323 "type": "integer",
324 "example": 0
325 },
326 "KEY_VALUE_STORE_WRITES": {
327 "type": "number",
328 "example": 0.00005
329 },
330 "KEY_VALUE_STORE_LISTS": {
331 "type": "integer",
332 "example": 0
333 },
334 "REQUEST_QUEUE_READS": {
335 "type": "integer",
336 "example": 0
337 },
338 "REQUEST_QUEUE_WRITES": {
339 "type": "integer",
340 "example": 0
341 },
342 "DATA_TRANSFER_INTERNAL_GBYTES": {
343 "type": "integer",
344 "example": 0
345 },
346 "DATA_TRANSFER_EXTERNAL_GBYTES": {
347 "type": "integer",
348 "example": 0
349 },
350 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
351 "type": "integer",
352 "example": 0
353 },
354 "PROXY_SERPS": {
355 "type": "integer",
356 "example": 0
357 }
358 }
359 }
360 }
361 }
362 }
363 }
364 }
365 }
366}
Real-time knowledge for LLMs OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Real-time knowledge for LLMs from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Actor Metrics
8 monthly users
-
8 bookmarks
>99% runs succeeded
Created in Jun 2024
Modified 5 months ago