Slack MCP SERVER
Pricing
Pay per event
Slack MCP SERVER
Slack AI MCP SERVER unique tool for integration slack tool into AI based automation.
Pricing
Pay per event
Rating
0.0
(0)
Developer

bhansalisoft
Actor stats
0
Bookmarked
2
Total users
1
Monthly active users
2 days ago
Last modified
Categories
Share
🚀 Slack AI MCP Server
The Slack AI MCP Server connects AI assistants and automation systems directly to Slack workspaces using the Model Context Protocol (MCP). This Actor enables AI models to read, send, and analyze Slack messages, manage channels, and interact with workspace data — all through standardized MCP interfaces.
It bridges Slack’s API with Apify’s automation ecosystem, allowing you to build intelligent ChatOps workflows, AI assistants, and conversational agents that can operate securely inside your organization’s Slack.
🧠 Key Features
✅ Real-time Slack interaction Read and send messages, react with emojis, and reply in threads directly through MCP tools.
✅ Comprehensive workspace access List channels, view user profiles, read message history, and search workspace conversations.
✅ Automated AI workflows Trigger actions based on keyword detection or message patterns (e.g., respond to “deploy” automatically).
✅ Secure authentication
Authenticate with your Slack workspace using a Bot User OAuth Token (xoxb-...), securely stored locally or via environment variables.
✅ Standardized MCP protocol Integrates with Claude Desktop, LangGraph, and other AI orchestration platforms for seamless AI ↔ Slack connectivity.
✅ Scalable multi-channel architecture Supports multiple concurrent AI agents across many Slack channels.
🧩 Tools Exposed by MCP Server
| Tool | Description |
|---|---|
| slack_auth_prompt | Guides user to create a Slack app and obtain the Bot User OAuth Token. |
| save_slack_bot_token(bot_token) | Stores and activates a Slack Bot Token (xoxb-...). |
| slack_status | Checks if the saved token is valid and displays bot identity info. |
| list_channels(limit, types) | Lists all public/private channels the bot can access. |
| create_channel(name, is_private) | Creates a new Slack channel. |
| invite_user(channel_id, user_id) | Invites a user into a channel by ID. |
| post_message(channel_id, text, thread_ts) | Sends or replies to a message in a channel. |
| add_reaction(channel_id, timestamp, emoji) | Adds an emoji reaction to a message. |
| read_channel_history(channel_id, limit, oldest) | Fetches recent messages from a channel. |
| search_messages(query, count) | Searches across workspace messages. |
| get_user_profile(user_id) | Returns profile info for a user. |
| detect_and_reply(channel_id, keyword, reply_text) | Scans messages and replies to any containing a specific keyword. |
Demo video for Slack MCP Server
⚙️ Input Parameters
| Field | Type | Editor | Description |
|---|---|---|---|
slack_bot_token | string | password | Your Slack Bot User OAuth Token (starts with xoxb-...). |
slack_app_token | string | password | (Optional) Slack App-Level Token for advanced Socket Mode usage. |
Example Input
{"slack_bot_token": "xoxb-1234567890-abcdef123456","slack_app_token": ""}
🔑 How to Get Your Slack Bot Token
1️⃣ Go to https://api.slack.com/apps 2️⃣ Create a new app → “From Scratch” 3️⃣ Under OAuth & Permissions, add these Bot Token Scopes:
chat:writechannels:read,channels:historygroups:read,im:read,users:readreactions:write,search:read4️⃣ Click Install to Workspace and Authorize 5️⃣ Copy the Bot User OAuth Token (xoxb-...) 6️⃣ Paste it in your Apify Actor input or call:
save_slack_bot_token("xoxb-...")
🧰 Required Slack Scopes
| Category | Scopes |
|---|---|
| Reading | channels:read, channels:history, groups:read, im:read, users:read, search:read |
| Writing | chat:write, reactions:write |
| Managing | channels:manage, groups:write (optional) |
📌 Grant scopes in Slack App → OAuth & Permissions → Bot Token Scopes → Save & Reinstall App.
🧠 Example Workflows
💬 Send and Read Messages
post_message(channel_id="C12345678", text="Hello team, this is your AI assistant!")read_channel_history(channel_id="C12345678", limit=20)
🔍 Keyword Automation
Auto-reply to messages that mention “deploy”:
detect_and_reply(channel_id="C12345678", keyword="deploy", reply_text="✅ Deployment acknowledged.")
😄 Add Reactions
add_reaction(channel_id="C12345678", timestamp="1722234455.002300", emoji="thumbsup")
📚 Get Channel and User Info
list_channels(limit=50)get_user_profile(user_id="U045XYZ12")
🧠 Example Output
{"ok": true,"bot_user": "apify-mcp-bot","team": "Acme Corp","channels": [{"id": "C04ABCD12", "name": "general"},{"id": "C05EFGH34", "name": "devops"}]}
⚙️ MCP Configuration Example
To connect this Actor to Claude Desktop or any MCP client, add to your config:
{"mcpServers": {"slack-mcp-server": {"url": "https://bhansalisoft--slack-mcp-server.apify.actor/mcp"}}}
Once connected, you’ll see all Slack MCP tools automatically listed in your client.
🔄 Typical Usage Flow
1️⃣ slack_auth_prompt → instructions for creating a Slack app
2️⃣ save_slack_bot_token("xoxb-...") → authenticate
3️⃣ slack_status → confirm token validity
4️⃣ list_channels → choose a target channel
5️⃣ post_message → send AI-generated messages
6️⃣ detect_and_reply → automate responses or trigger workflows
🧾 Example Environment Variables
| Key | Description |
|---|---|
SLACK_BOT_TOKEN | Bot User OAuth Token (xoxb-...) |
SLACK_APP_TOKEN | Optional App-level Token (xapp-...) |
Set them in your Apify Actor Settings → Environment Variables, or via MCP tools.
💡 Benefits
- Integrate AI directly into Slack workflows
- Enable ChatOps with automated responses
- Reduce manual communication tasks
- Standardized interface via MCP — works with Gemini, Claude, or OpenAI models
- Scalable across multiple channels, bots, or workspaces
🧠 Example Use Case: AI DevOps Assistant
Use your AI agent to automatically:
- Watch the #deployments channel
- Detect words like “deployed”, “rollback”, “error”
- Send Slack replies summarizing next steps via Gemini AI
- Trigger Jenkins or GitHub actions from Slack messages (via Apify actors)
🧾 Example Log Output
✅ Slack MCP Server started successfully✅ Passing SLACK_BOT_TOKEN to subprocess✅ Connected as @apify-mcp-bot✅ Listening for MCP requests...