Gemini AI MCP SERVER avatar
Gemini AI MCP SERVER

Pricing

Pay per event

Go to Apify Store
Gemini AI MCP SERVER

Gemini AI MCP SERVER

Gemini AI MCP SERVER unique tool for Gamini AI functionality integration with apify and other AI tool.

Pricing

Pay per event

Rating

0.0

(0)

Developer

bhansalisoft

bhansalisoft

Maintained by Community

Actor stats

0

Bookmarked

2

Total users

2

Monthly active users

3 days ago

Last modified

Share

🚀 Gemini AI MCP Server

The Gemini AI MCP Server integrates Google’s Gemini language models with Apify’s automation platform using the Model Context Protocol (MCP). This actor acts as a bridge between scraping workflows and AI analysis, allowing real-time natural-language understanding, data summarization, classification, and structured extraction within your Apify or AI pipelines.

🧠 Key Features

Gemini API integration Seamlessly connects with Google’s Gemini models (gemini-2.5-flash, etc.) using your API key.

Real-time AI data processing Analyze and interpret scraped datasets as soon as they’re collected — directly in your Apify workflows.

Flexible prompt customization Define tasks such as summarization, sentiment analysis, categorization, or structured extraction using natural language.

Apify workflow integration Run any Apify Actor (e.g., bhansalisoft~google-map-business-scraper) and automatically analyze its dataset output using Gemini AI.

Secure key storage Users can safely add, update, or verify their Gemini API key using interactive MCP tools.

Structured output for automation Return JSON-formatted results suitable for further processing or database insertion.

🧩 Tools Exposed by MCP Server

Tool nameDescription
save_gemini_api_key(api_key)Saves the user-provided Gemini API key locally for persistent sessions.
gemini_statusChecks if the saved API key is valid and the model responds correctly.
scrape_and_analyze(apify_actor_id, input_json, task_prompt)Runs an Apify scraper actor, fetches dataset results, and analyzes them via Gemini AI.
gemini_analyze_text(task, text)Analyze raw text with Gemini (summarization, sentiment, etc.).
gemini_analyze_url(url, task)Fetches a web page, extracts text, and performs Gemini analysis.
gemini_categorize(labels_json, text)Categorizes text into provided labels and returns label + confidence.
gemini_structured_extract(text, schema_json)Extracts structured data based on a given JSON schema.
gemini_embed_text(text)Returns an embedding vector for semantic search or clustering.
gemini_set_defaults(model, temperature)Updates the default Gemini model and temperature used by the server.
summarize_scraped_data(json_data)Summarizes pre-scraped JSON data using Gemini AI.

⚙️ Input Parameters

Basic Configuration

FieldTypeDescription
gemini_api_keystringYour Google Gemini API key. Obtain it from AI Studio → API Keys.
apify_tokenstringYour Apify API token to run other actors (for scrape_and_analyze).

Advanced (Optional)

FieldTypeDefaultDescription
default_modelstring"gemini-2.5-flash"The Gemini model to use for all tasks.
temperaturefloat0.3Randomness control — higher = more creative.

🪄 Example Use Cases

🧠 Sentiment and Summary Analysis

Scrape user reviews with your Apify scraper, then call:

scrape_and_analyze("bhansalisoft~google-map-business-scraper", "{
"Keyword": "Hotels",
"Limit": "20",
"RequireEmail": false,
"location": "Ahmedabad"
}", "Summarize and categorize sentiment.")

📊 Structured Extraction

gemini_structured_extract(
text="Apple Inc. reported quarterly revenue of $83B.",
schema_json='{"type":"object","properties":{"company":{"type":"string"},"revenue":{"type":"string"}}}'
)

🔍 Content Categorization

gemini_categorize(
labels_json='["Positive","Negative","Neutral"]',
text="The product is amazing and easy to use!"
)

🔑 Authentication

You can authenticate Gemini in below ways:

  1. Interactive (from client) Use MCP tools:

    save_gemini_api_key("AIzaSyXXXX")
    gemini_status

🔄 Typical Workflow

  1. Run an Apify scraping actor → fetch dataset
  2. Pass scraped data into Gemini MCP → analyze text
  3. Return AI insights, structured JSON, or summaries
  4. (Optional) Store results back into Apify datasets

🔍 Example MCP Connection (Claude Desktop / LangGraph)

Add to your claude_desktop_config.json:

{
"mcpServers": {
"gemini-mcp-server": {
"url": "https://bhansalisoft--gemini-mcp-server.apify.actor/mcp"
}
}
}

After connection, all Gemini tools will appear automatically in your MCP client.

🧾 Output Formats

All responses return TextContent objects in JSON-formatted text for maximum compatibility with MCP clients and Apify datasets.

🧩 Example Output

✅ Gemini API key is valid. Model responded: Pong...
✅ Analyzed 50 items. Sentiment distribution: 70% positive, 20% neutral, 10% negative.

👤 Target Audience

  • Data scientists integrating AI with scraping pipelines
  • Analysts automating text classification or summarization
  • Developers building AI-powered dashboards and tools
  • Marketing teams automating content and trend analysis

💡 Benefits

  • Unified AI + Scraping workflow
  • Minimal setup — just your API keys
  • Works seamlessly with Claude, LangGraph, and MCP clients
  • Scalable and fully cloud-based under Apify

📚 Learn More

Demo Videos

Check Demo video using TEST MCP Client

Check Demo using MCP inspector Tools