Gemini AI MCP SERVER
Pricing
Pay per event
Gemini AI MCP SERVER
Gemini AI MCP SERVER unique tool for Gamini AI functionality integration with apify and other AI tool.
Pricing
Pay per event
Rating
0.0
(0)
Developer

bhansalisoft
Actor stats
0
Bookmarked
5
Total users
2
Monthly active users
13 days ago
Last modified
Categories
Share
🚀 Gemini AI MCP Server
The Gemini AI MCP Server integrates Google’s Gemini language models with Apify’s automation platform using the Model Context Protocol (MCP). This actor acts as a bridge between scraping workflows and AI analysis, allowing real-time natural-language understanding, data summarization, classification, and structured extraction within your Apify or AI pipelines.
🧠 Key Features
✅ Gemini API integration
Seamlessly connects with Google’s Gemini models (gemini-2.5-flash, etc.) using your API key.
✅ Real-time AI data processing Analyze and interpret scraped datasets as soon as they’re collected — directly in your Apify workflows.
✅ Flexible prompt customization Define tasks such as summarization, sentiment analysis, categorization, or structured extraction using natural language.
✅ Apify workflow integration
Run any Apify Actor (e.g., bhansalisoft~google-map-business-scraper) and automatically analyze its dataset output using Gemini AI.
✅ Secure key storage Users can safely add, update, or verify their Gemini API key using interactive MCP tools.
✅ Structured output for automation Return JSON-formatted results suitable for further processing or database insertion.
🧩 Tools Exposed by MCP Server
| Tool name | Description |
|---|---|
save_gemini_api_key(api_key) | Saves the user-provided Gemini API key locally for persistent sessions. |
gemini_status | Checks if the saved API key is valid and the model responds correctly. |
scrape_and_analyze(apify_actor_id, input_json, task_prompt) | Runs an Apify scraper actor, fetches dataset results, and analyzes them via Gemini AI. |
gemini_analyze_text(task, text) | Analyze raw text with Gemini (summarization, sentiment, etc.). |
gemini_analyze_url(url, task) | Fetches a web page, extracts text, and performs Gemini analysis. |
gemini_categorize(labels_json, text) | Categorizes text into provided labels and returns label + confidence. |
gemini_structured_extract(text, schema_json) | Extracts structured data based on a given JSON schema. |
gemini_embed_text(text) | Returns an embedding vector for semantic search or clustering. |
gemini_set_defaults(model, temperature) | Updates the default Gemini model and temperature used by the server. |
summarize_scraped_data(json_data) | Summarizes pre-scraped JSON data using Gemini AI. |
🔍 MCP Connection Configuration (Claude Desktop / LangGraph)
MCP SERVER URL Will be
https://bhansalisoft--gemini-mcp-server.apify.actor/mcp
Add to your claude_desktop_config.json:
{"mcpServers": {"gemini-mcp-server": {"command": "npx","args": ["mcp-remote","https://bhansalisoft--gemini-mcp-server.apify.actor/mcp?token=[Your APIFY KEY]"]}}}
After connection, all Gemini tools will appear automatically in your MCP client.
Demo Videos
Check Demo video using TEST MCP Client
Check Demo using MCP inspector Tools