Gemini AI MCP SERVER
Pricing
Pay per event
Gemini AI MCP SERVER
Gemini AI MCP SERVER unique tool for Gamini AI functionality integration with apify and other AI tool.
Pricing
Pay per event
Rating
0.0
(0)
Developer

bhansalisoft
Actor stats
0
Bookmarked
2
Total users
2
Monthly active users
3 days ago
Last modified
Categories
Share
🚀 Gemini AI MCP Server
The Gemini AI MCP Server integrates Google’s Gemini language models with Apify’s automation platform using the Model Context Protocol (MCP). This actor acts as a bridge between scraping workflows and AI analysis, allowing real-time natural-language understanding, data summarization, classification, and structured extraction within your Apify or AI pipelines.
🧠 Key Features
✅ Gemini API integration
Seamlessly connects with Google’s Gemini models (gemini-2.5-flash, etc.) using your API key.
✅ Real-time AI data processing Analyze and interpret scraped datasets as soon as they’re collected — directly in your Apify workflows.
✅ Flexible prompt customization Define tasks such as summarization, sentiment analysis, categorization, or structured extraction using natural language.
✅ Apify workflow integration
Run any Apify Actor (e.g., bhansalisoft~google-map-business-scraper) and automatically analyze its dataset output using Gemini AI.
✅ Secure key storage Users can safely add, update, or verify their Gemini API key using interactive MCP tools.
✅ Structured output for automation Return JSON-formatted results suitable for further processing or database insertion.
🧩 Tools Exposed by MCP Server
| Tool name | Description |
|---|---|
save_gemini_api_key(api_key) | Saves the user-provided Gemini API key locally for persistent sessions. |
gemini_status | Checks if the saved API key is valid and the model responds correctly. |
scrape_and_analyze(apify_actor_id, input_json, task_prompt) | Runs an Apify scraper actor, fetches dataset results, and analyzes them via Gemini AI. |
gemini_analyze_text(task, text) | Analyze raw text with Gemini (summarization, sentiment, etc.). |
gemini_analyze_url(url, task) | Fetches a web page, extracts text, and performs Gemini analysis. |
gemini_categorize(labels_json, text) | Categorizes text into provided labels and returns label + confidence. |
gemini_structured_extract(text, schema_json) | Extracts structured data based on a given JSON schema. |
gemini_embed_text(text) | Returns an embedding vector for semantic search or clustering. |
gemini_set_defaults(model, temperature) | Updates the default Gemini model and temperature used by the server. |
summarize_scraped_data(json_data) | Summarizes pre-scraped JSON data using Gemini AI. |
⚙️ Input Parameters
Basic Configuration
| Field | Type | Description |
|---|---|---|
gemini_api_key | string | Your Google Gemini API key. Obtain it from AI Studio → API Keys. |
apify_token | string | Your Apify API token to run other actors (for scrape_and_analyze). |
Advanced (Optional)
| Field | Type | Default | Description |
|---|---|---|---|
default_model | string | "gemini-2.5-flash" | The Gemini model to use for all tasks. |
temperature | float | 0.3 | Randomness control — higher = more creative. |
🪄 Example Use Cases
🧠 Sentiment and Summary Analysis
Scrape user reviews with your Apify scraper, then call:
scrape_and_analyze("bhansalisoft~google-map-business-scraper", "{"Keyword": "Hotels","Limit": "20","RequireEmail": false,"location": "Ahmedabad"}", "Summarize and categorize sentiment.")
📊 Structured Extraction
gemini_structured_extract(text="Apple Inc. reported quarterly revenue of $83B.",schema_json='{"type":"object","properties":{"company":{"type":"string"},"revenue":{"type":"string"}}}')
🔍 Content Categorization
gemini_categorize(labels_json='["Positive","Negative","Neutral"]',text="The product is amazing and easy to use!")
🔑 Authentication
You can authenticate Gemini in below ways:
-
Interactive (from client) Use MCP tools:
save_gemini_api_key("AIzaSyXXXX")gemini_status
🔄 Typical Workflow
- Run an Apify scraping actor → fetch dataset
- Pass scraped data into Gemini MCP → analyze text
- Return AI insights, structured JSON, or summaries
- (Optional) Store results back into Apify datasets
🔍 Example MCP Connection (Claude Desktop / LangGraph)
Add to your claude_desktop_config.json:
{"mcpServers": {"gemini-mcp-server": {"url": "https://bhansalisoft--gemini-mcp-server.apify.actor/mcp"}}}
After connection, all Gemini tools will appear automatically in your MCP client.
🧾 Output Formats
All responses return TextContent objects in JSON-formatted text for maximum compatibility with MCP clients and Apify datasets.
🧩 Example Output
✅ Gemini API key is valid. Model responded: Pong...✅ Analyzed 50 items. Sentiment distribution: 70% positive, 20% neutral, 10% negative.
👤 Target Audience
- Data scientists integrating AI with scraping pipelines
- Analysts automating text classification or summarization
- Developers building AI-powered dashboards and tools
- Marketing teams automating content and trend analysis
💡 Benefits
- Unified AI + Scraping workflow
- Minimal setup — just your API keys
- Works seamlessly with Claude, LangGraph, and MCP clients
- Scalable and fully cloud-based under Apify
📚 Learn More
Demo Videos
Check Demo video using TEST MCP Client
Check Demo using MCP inspector Tools