Funda.nl Scraper 🏠 avatar

Funda.nl Scraper 🏠

Try for free

2 hours trial then $29.99/month - No credit card required now

Go to Store
Funda.nl Scraper 🏠

Funda.nl Scraper 🏠

easyapi/funda-nl-scraper
Try for free

2 hours trial then $29.99/month - No credit card required now

Scrape property listings from Funda.nl - Extract detailed real estate data including prices, locations, property features, and more. Perfect for real estate analysis and market research in the Netherlands.

πŸ” What does Funda.nl Scraper do?

This actor scrapes real estate listings from Funda.nl, the Netherlands' leading property website. It extracts comprehensive property data, enabling you to gather valuable real estate market insights.

✨ Features

  • 🏘️ Scrapes detailed property listings from search results
  • πŸ“Š Extracts comprehensive property information
  • πŸ”„ Supports pagination and dynamic loading
  • πŸš€ High-performance with built-in proxy rotation
  • ⚑ Handles rate limiting and anti-bot measures
  • πŸ’Ύ Outputs structured JSON data

🎯 Use Cases

  • πŸ“ˆ Real estate market analysis
  • 🏒 Property investment research
  • πŸ’° Price trend monitoring
  • πŸ—ΊοΈ Geographic market analysis
  • πŸ“Š Data aggregation for real estate platforms

πŸ’‘ Input Parameters

The actor accepts the following input parameters:

  • searchUrls (Required): Array of Funda.nl search URLs to scrape
  • maxItems (Optional): Maximum number of items to scrape
  • proxyConfiguration (Optional): Proxy settings for the scraper

πŸ“ Output Format

The actor outputs data in JSON format, including:

  • Property details (price, location, size)
  • Property features and amenities
  • Listing information
  • Images and media links
  • Agent contact information

πŸ”¨ Usage

  1. Input your Funda.nl search URL(s)
  2. Configure optional parameters
  3. Run the actor and collect the results

πŸ’ͺ Limitations

  • Respects Funda.nl's terms of service
  • Rate limiting applied to prevent blocking
  • Maximum of 10000 results per search URL

Input Example

A full explanation of an input example in JSON.

1{
2        "searchUrls": ["https://www.funda.nl/en/zoeken/koop?selected_area=%5B%22bergen-li%22%5D&search_result=1"],
3        "maxItems": 30,
4        "proxyConfiguration": {
5            "useApifyProxy": false,
6            "apifyProxyGroups": [
7                "RESIDENTIAL"
8            ]
9        }
10    }

Output sample

The results will be wrapped into a dataset which you can always find in theΒ StorageΒ tab. Here's an excerpt from the data you'd get if you apply the input parameters above:

And here is the same data but in JSON. You can choose in which format to download your data: JSON, JSONL, Excel spreadsheet, HTML table, CSV, or XML.

1[
2	{
3		"highlight": {},
4		"agent": [
5			{
6				"logo_type": "new",
7				"relative_url": "/makelaar/13026-smedema-makelaars-en-taxateurs/",
8				"is_primary": true,
9				"logo_id": 141935042,
10				"name": "Smedema Makelaars & Taxateurs",
11				"association": "NVM",
12				"id": 13026
13			}
14		],
15		"number_of_bedrooms": 3,
16		"address": {
17			"country": "NL",
18			"province": "Limburg",
19			"wijk": "Nieuw-Bergen",
20			"city": "Bergen (LI)",
21			"neighbourhood": "Nieuw-Bergen Kern",
22			"identifiers": [
23				"nl",
24				"bergen-li/straat-siebengewaldseweg",
25				"bergen-li",
26				"gemeente-bergen-li",
27				"provincie-limburg",
28				"bergen-li/nieuw-bergen-kern",
29				"bergen-li/wijk-nieuw-bergen",
30				"5854pc",
31				"5854",
32				"regio-noord-limburg"
33			],
34			"municipality": "Bergen (LI)",
35			"is_bag_address": true,
36			"house_number": "38",
37			"postal_code": "5854PC",
38			"street_name": "Siebengewaldseweg"
39		},
40		"plot_area_range": {
41			"gte": 456,
42			"lte": 456
43		},
44		"blikvanger": {
45			"enabled": false
46		},
47		"object_type": "house",
48		"energy_label": "A",
49		"floor_area": [
50			125
51		],
52		"floor_area_range": {
53			"gte": 125,
54			"lte": 125
55		},
56		"type": "single",
57		"thumbnail_id": [
58			199527498,
59			199527499,
60			199527500,
61			199527501,
62			199527503,
63			199527505,
64			199527509,
65			199527512,
66			199527514,
67			199527517,
68			199527520,
69			199527524,
70			199527527,
71			199527530,
72			199527533,
73			199527536,
74			199527538,
75			199527541,
76			199527542,
77			199527543,
78			199527546,
79			199527547,
80			199527548,
81			199527549,
82			199527550,
83			199527553,
84			199527556,
85			199527559,
86			199527562,
87			199527567,
88			199527569,
89			199527572,
90			199527575,
91			199527581,
92			199527584,
93			199527586,
94			199527588,
95			199527589,
96			199527590,
97			199527592,
98			199527594,
99			199527597,
100			199527600,
101			199527605,
102			199527602,
103			199527631
104		],
105		"offering_type": [
106			"buy"
107		],
108		"price": {
109			"selling_price": [
110				499000
111			],
112			"selling_price_range": {
113				"gte": 499000,
114				"lte": 499000
115			},
116			"selling_price_type": "regular",
117			"selling_price_condition": "kosten_koper"
118		},
119		"plot_area": [
120			456
121		],
122		"id": 7332972,
123		"available_media_types": [
124			"floor_plan",
125			"photo_360",
126			"video"
127		],
128		"publish_date": "2024-10-25T15:15:02.5130000",
129		"object_detail_page_relative_url": "/detail/koop/bergen-li/huis-siebengewaldseweg-38/43787335/",
130		"status": "none",
131		"number_of_rooms": 7,
132		"_index": "listings-wonen-searcher-alias-prod",
133		"_id": "7332972",
134		"_score": null,
135		"sort": [
136			"basis",
137			59000,
138			7332972
139		],
140		"_click_id": 0,
141		"placement": "listing_results_normal",
142		"globalId": 7332972
143	},
144    ...
145]
Developer
Maintained by Community

Actor Metrics

  • 1 monthly user

  • 0 No stars yet

  • Created in Dec 2024

  • Modified 6 hours ago