
LinkedIn Company Search Scraper
1 day trial then $19.99/month - No credit card required now
This Actor may be unreliable while under maintenance. Would you like to try a similar Actor instead?
See alternative Actors
LinkedIn Company Search Scraper
1 day trial then $19.99/month - No credit card required now
The most efficient way to search and extract company data from LinkedIn. Scrape thousands of companies in seconds.
Actor Metrics
12 Monthly users
No reviews yet
2 bookmarks
0% runs succeeded
Created in Aug 2022
Modified 2 years ago
You can access the LinkedIn Company Search Scraper programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "1.2",
5 "x-build-id": "4ggzZANpumtJgUBWf"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/flood~linkedin-company-search-scraper/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-flood-linkedin-company-search-scraper",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/flood~linkedin-company-search-scraper/runs": {
50 "post": {
51 "operationId": "runs-sync-flood-linkedin-company-search-scraper",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/flood~linkedin-company-search-scraper/run-sync": {
93 "post": {
94 "operationId": "run-sync-flood-linkedin-company-search-scraper",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "authToken"
135 ],
136 "properties": {
137 "authToken": {
138 "title": "Authentication Token",
139 "type": "string",
140 "description": "LinkedIn authentication Token. Set to the value of the li_at cookie from a Web browser after a successful authentication on linkedin.com. The token expires after 1 year or after a logout from LinkedIn."
141 },
142 "language": {
143 "title": "Preferred Language",
144 "enum": [
145 "en-US",
146 "ar-AE",
147 "in-ID",
148 "zh-CN",
149 "zh-TW",
150 "cs-CZ",
151 "da-DK",
152 "nl-NL",
153 "fr-FR",
154 "de-DE",
155 "hi-IN",
156 "it-IT",
157 "ja-JP",
158 "ko-KR",
159 "ms-MY",
160 "no-NO",
161 "pl-PL",
162 "pt-BR",
163 "ro-RO",
164 "ru-RU",
165 "es-ES",
166 "sv-SE",
167 "tl-PH",
168 "th-TH",
169 "tr-TR",
170 "uk-UA"
171 ],
172 "type": "string",
173 "description": "Preferred language to autocomplete filters and localize results."
174 },
175 "keywords": {
176 "title": "Search Keywords",
177 "type": "string",
178 "description": "Company search keywords, as on LinkedIn."
179 },
180 "location": {
181 "title": "Location Filter",
182 "type": "array",
183 "description": "Filter companies by location, as on LinkedIn. LinkedIn autocompletion is applied to location strings.",
184 "items": {
185 "type": "string"
186 }
187 },
188 "industry": {
189 "title": "Industry Filter",
190 "type": "array",
191 "description": "Filter companies by industry, as on LinkedIn. LinkedIn autocompletion is applied to industry strings.",
192 "items": {
193 "type": "string"
194 }
195 },
196 "size": {
197 "title": "Size Filter",
198 "type": "array",
199 "description": "Filter companies by size, as on LinkedIn. Accepted values are: \"1-10\", \"11-50\", \"51-200\", \"201-500\", \"501-1000\", \"1001-5000\", \"5001-10000\" and \"10000+\".",
200 "items": {
201 "type": "string"
202 }
203 },
204 "hasJobs": {
205 "title": "Has Jobs Filter",
206 "type": "boolean",
207 "description": "Filter companies with active job offers only, as on LinkedIn."
208 },
209 "networkDepth": {
210 "title": "Network Depth Filter",
211 "enum": [
212 "1"
213 ],
214 "type": "string",
215 "description": "Filter companies based on connections working there, as on LinkedIn."
216 },
217 "limit": {
218 "title": "Limit",
219 "minimum": 0,
220 "maximum": 1000,
221 "type": "integer",
222 "description": "Maximum number of companies to be scraped. From 0 to 1000. Default to 50.",
223 "default": 50
224 },
225 "offset": {
226 "title": "Offset",
227 "minimum": 0,
228 "maximum": 999,
229 "type": "integer",
230 "description": "Skip the first [offset] results. From 0 to 999. Default to 0.",
231 "default": 0
232 },
233 "locationId": {
234 "title": "Location Id Filter",
235 "type": "array",
236 "description": "Filter companies by location id. Provided for compatibility purpose, use Location Filter when possible.",
237 "items": {
238 "type": "string"
239 }
240 },
241 "industryId": {
242 "title": "Industry Id Filter",
243 "type": "array",
244 "description": "Filter companies by industry id. Provided for compatibility purpose, use Industry Filter when possible.",
245 "items": {
246 "type": "string"
247 }
248 },
249 "proxyConfiguration": {
250 "title": "Proxy Configuration",
251 "type": "object",
252 "description": "Apify Proxy Configuration",
253 "default": {
254 "useApifyProxy": false
255 }
256 },
257 "datasetName": {
258 "title": "Dataset Name",
259 "type": "string",
260 "description": "Name or id of the dataset that will be used for storing results. If left empty, the default dataset of the actor will be used."
261 }
262 }
263 },
264 "runsResponseSchema": {
265 "type": "object",
266 "properties": {
267 "data": {
268 "type": "object",
269 "properties": {
270 "id": {
271 "type": "string"
272 },
273 "actId": {
274 "type": "string"
275 },
276 "userId": {
277 "type": "string"
278 },
279 "startedAt": {
280 "type": "string",
281 "format": "date-time",
282 "example": "2025-01-08T00:00:00.000Z"
283 },
284 "finishedAt": {
285 "type": "string",
286 "format": "date-time",
287 "example": "2025-01-08T00:00:00.000Z"
288 },
289 "status": {
290 "type": "string",
291 "example": "READY"
292 },
293 "meta": {
294 "type": "object",
295 "properties": {
296 "origin": {
297 "type": "string",
298 "example": "API"
299 },
300 "userAgent": {
301 "type": "string"
302 }
303 }
304 },
305 "stats": {
306 "type": "object",
307 "properties": {
308 "inputBodyLen": {
309 "type": "integer",
310 "example": 2000
311 },
312 "rebootCount": {
313 "type": "integer",
314 "example": 0
315 },
316 "restartCount": {
317 "type": "integer",
318 "example": 0
319 },
320 "resurrectCount": {
321 "type": "integer",
322 "example": 0
323 },
324 "computeUnits": {
325 "type": "integer",
326 "example": 0
327 }
328 }
329 },
330 "options": {
331 "type": "object",
332 "properties": {
333 "build": {
334 "type": "string",
335 "example": "latest"
336 },
337 "timeoutSecs": {
338 "type": "integer",
339 "example": 300
340 },
341 "memoryMbytes": {
342 "type": "integer",
343 "example": 1024
344 },
345 "diskMbytes": {
346 "type": "integer",
347 "example": 2048
348 }
349 }
350 },
351 "buildId": {
352 "type": "string"
353 },
354 "defaultKeyValueStoreId": {
355 "type": "string"
356 },
357 "defaultDatasetId": {
358 "type": "string"
359 },
360 "defaultRequestQueueId": {
361 "type": "string"
362 },
363 "buildNumber": {
364 "type": "string",
365 "example": "1.0.0"
366 },
367 "containerUrl": {
368 "type": "string"
369 },
370 "usage": {
371 "type": "object",
372 "properties": {
373 "ACTOR_COMPUTE_UNITS": {
374 "type": "integer",
375 "example": 0
376 },
377 "DATASET_READS": {
378 "type": "integer",
379 "example": 0
380 },
381 "DATASET_WRITES": {
382 "type": "integer",
383 "example": 0
384 },
385 "KEY_VALUE_STORE_READS": {
386 "type": "integer",
387 "example": 0
388 },
389 "KEY_VALUE_STORE_WRITES": {
390 "type": "integer",
391 "example": 1
392 },
393 "KEY_VALUE_STORE_LISTS": {
394 "type": "integer",
395 "example": 0
396 },
397 "REQUEST_QUEUE_READS": {
398 "type": "integer",
399 "example": 0
400 },
401 "REQUEST_QUEUE_WRITES": {
402 "type": "integer",
403 "example": 0
404 },
405 "DATA_TRANSFER_INTERNAL_GBYTES": {
406 "type": "integer",
407 "example": 0
408 },
409 "DATA_TRANSFER_EXTERNAL_GBYTES": {
410 "type": "integer",
411 "example": 0
412 },
413 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
414 "type": "integer",
415 "example": 0
416 },
417 "PROXY_SERPS": {
418 "type": "integer",
419 "example": 0
420 }
421 }
422 },
423 "usageTotalUsd": {
424 "type": "number",
425 "example": 0.00005
426 },
427 "usageUsd": {
428 "type": "object",
429 "properties": {
430 "ACTOR_COMPUTE_UNITS": {
431 "type": "integer",
432 "example": 0
433 },
434 "DATASET_READS": {
435 "type": "integer",
436 "example": 0
437 },
438 "DATASET_WRITES": {
439 "type": "integer",
440 "example": 0
441 },
442 "KEY_VALUE_STORE_READS": {
443 "type": "integer",
444 "example": 0
445 },
446 "KEY_VALUE_STORE_WRITES": {
447 "type": "number",
448 "example": 0.00005
449 },
450 "KEY_VALUE_STORE_LISTS": {
451 "type": "integer",
452 "example": 0
453 },
454 "REQUEST_QUEUE_READS": {
455 "type": "integer",
456 "example": 0
457 },
458 "REQUEST_QUEUE_WRITES": {
459 "type": "integer",
460 "example": 0
461 },
462 "DATA_TRANSFER_INTERNAL_GBYTES": {
463 "type": "integer",
464 "example": 0
465 },
466 "DATA_TRANSFER_EXTERNAL_GBYTES": {
467 "type": "integer",
468 "example": 0
469 },
470 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
471 "type": "integer",
472 "example": 0
473 },
474 "PROXY_SERPS": {
475 "type": "integer",
476 "example": 0
477 }
478 }
479 }
480 }
481 }
482 }
483 }
484 }
485 }
486}
LinkedIn Company Search Scraper OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for LinkedIn Company Search Scraper from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: