
Linkedin Job Scraper
Pricing
$5.00 / 1,000 requests

Linkedin Job Scraper
Exact LinkedIn job posts base on filters.
0.0 (0)
Pricing
$5.00 / 1,000 requests
0
2
2
Last modified
3 days ago
You can access the Linkedin Job Scraper programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
{ "openapi": "3.0.1", "info": { "version": "0.0", "x-build-id": "mfablOVDqGNtoILIS" }, "servers": [ { "url": "https://api.apify.com/v2" } ], "paths": { "/acts/freshdata~linkedin-job-scraper/run-sync-get-dataset-items": { "post": { "operationId": "run-sync-get-dataset-items-freshdata-linkedin-job-scraper", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } }, "/acts/freshdata~linkedin-job-scraper/runs": { "post": { "operationId": "runs-sync-freshdata-linkedin-job-scraper", "x-openai-isConsequential": false, "summary": "Executes an Actor and returns information about the initiated run in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/runsResponseSchema" } } } } } } }, "/acts/freshdata~linkedin-job-scraper/run-sync": { "post": { "operationId": "run-sync-freshdata-linkedin-job-scraper", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } } }, "components": { "schemas": { "inputSchema": { "type": "object", "properties": { "keywords": { "title": "keywords", "type": "string", "description": "Keywords to search for jobs." }, "geo_code": { "title": "geo_code", "type": "integer", "description": "Geographical code for filtering jobs. Learn how to [find a geo_code](https://i.postimg.cc/mkpbn8hS/geo-code.png)." }, "date_posted": { "title": "date_posted", "enum": [ "Any time", "Past month", "Past week", "Past 24 hours" ], "type": "string", "description": "Filter jobs by date posted. Acceptable values include predefined date ranges." }, "experience_levels": { "title": "experience_levels", "type": "array", "description": "Filter jobs by experience levels. Acceptable values include predefined experience levels.", "items": { "type": "string", "enum": [ "Internship", "Associate", "Director", "Entry level", "Mid-Senior level", "Executive" ] } }, "company_ids": { "title": "company_ids", "type": "string", "description": "Comma-separated company IDs. Example: 1035,2001,3002. Learn how to [find a company_id](https://i.postimg.cc/1zVwkP3B/company-id.png)." }, "title_ids": { "title": "title_ids", "type": "string", "description": "Comma-separated title IDs. Learn how to [find a title_id](https://i.postimg.cc/sgNhW4c7/title-id.png)." }, "industries": { "title": "industries", "type": "string", "description": "Comma-separated industry IDs. Learn how to [find an industry_id here](https://learn.microsoft.com/en-us/linkedin/shared/references/reference-tables/industry-codes-v2)." }, "onsite_remotes": { "title": "onsite_remotes", "type": "array", "description": "Possible values: ", "items": { "type": "string", "enum": [ "On-site", "Remote", "Hybrid" ] } }, "functions": { "title": "functions", "type": "array", "description": "", "items": { "type": "string", "enum": [ "Accounting", "Administrative", "Arts and Design", "Business Development", "Community and Social Services", "Consulting", "Education", "Engineering", "Entrepreneurship", "Finance", "Healthcare Services", "Human Resources", "Information Technology", "Legal", "Marketing", "Media and Communication", "Military and Protective Services", "Operations", "Product Management", "Program and Project Management", "Purchasing", "Quality Assurance", "Real Estate", "Research", "Sales", "Customer Success and Support" ] } }, "job_types": { "title": "job_types", "type": "array", "description": "Possible values: Full-time, Part-time, Contract, Temporary, Internship, Other.", "items": { "type": "string", "enum": [ "Full-time", "Part-time", "Contract", "Temporary", "Internship", "Other" ] } }, "sort_by": { "title": "sort_by", "enum": [ "Most recent", "Most relevant" ], "type": "string", "description": "Default value: Most relevant. Possible values: Most recent, Most relevant." }, "easy_apply": { "title": "easy_apply", "enum": [ "true", "false" ], "type": "string", "description": "" }, "under_10_applicants": { "title": "under_10_applicants", "enum": [ "true", "false" ], "type": "string", "description": "Filter jobs with less than 10 applicants. Acceptable values are 'true' or 'false'." }, "start": { "title": "start", "type": "integer", "description": "Pagination start index. Default: 0" } } }, "runsResponseSchema": { "type": "object", "properties": { "data": { "type": "object", "properties": { "id": { "type": "string" }, "actId": { "type": "string" }, "userId": { "type": "string" }, "startedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "finishedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "status": { "type": "string", "example": "READY" }, "meta": { "type": "object", "properties": { "origin": { "type": "string", "example": "API" }, "userAgent": { "type": "string" } } }, "stats": { "type": "object", "properties": { "inputBodyLen": { "type": "integer", "example": 2000 }, "rebootCount": { "type": "integer", "example": 0 }, "restartCount": { "type": "integer", "example": 0 }, "resurrectCount": { "type": "integer", "example": 0 }, "computeUnits": { "type": "integer", "example": 0 } } }, "options": { "type": "object", "properties": { "build": { "type": "string", "example": "latest" }, "timeoutSecs": { "type": "integer", "example": 300 }, "memoryMbytes": { "type": "integer", "example": 1024 }, "diskMbytes": { "type": "integer", "example": 2048 } } }, "buildId": { "type": "string" }, "defaultKeyValueStoreId": { "type": "string" }, "defaultDatasetId": { "type": "string" }, "defaultRequestQueueId": { "type": "string" }, "buildNumber": { "type": "string", "example": "1.0.0" }, "containerUrl": { "type": "string" }, "usage": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "integer", "example": 1 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } }, "usageTotalUsd": { "type": "number", "example": 0.00005 }, "usageUsd": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "number", "example": 0.00005 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } } } } } } } }}
Linkedin Job Scraper OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Linkedin Job Scraper from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: