
AI Linkedin Job Search
Under maintenance
Pricing
Pay per event

AI Linkedin Job Search
Under maintenance
A smart job search agent that analyzes your CV, scrapes LinkedIn job posts, and uses AI to filter and return only the most relevant opportunities.
0.0 (0)
Pricing
Pay per event
0
Total users
2
Monthly users
2
Runs succeeded
20%
Last modified
4 days ago
You can access the AI Linkedin Job Search programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
{ "openapi": "3.0.1", "info": { "version": "0.0", "x-build-id": "fjJxcZjOHIMIY2WO7" }, "servers": [ { "url": "https://api.apify.com/v2" } ], "paths": { "/acts/gokdeniz_kaymak~ai-linkedin-job-search/run-sync-get-dataset-items": { "post": { "operationId": "run-sync-get-dataset-items-gokdeniz_kaymak-ai-linkedin-job-search", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } }, "/acts/gokdeniz_kaymak~ai-linkedin-job-search/runs": { "post": { "operationId": "runs-sync-gokdeniz_kaymak-ai-linkedin-job-search", "x-openai-isConsequential": false, "summary": "Executes an Actor and returns information about the initiated run in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/runsResponseSchema" } } } } } } }, "/acts/gokdeniz_kaymak~ai-linkedin-job-search/run-sync": { "post": { "operationId": "run-sync-gokdeniz_kaymak-ai-linkedin-job-search", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } } }, "components": { "schemas": { "inputSchema": { "type": "object", "required": [ "cvContent", "workEnv", "workType", "workLocation", "prompt", "targetNumResults" ], "properties": { "cvContent": { "title": "CV Content", "type": "string", "description": "Please parse the content of your cv here, Markdown or just plain text", "default": "# Clark Kent\n\n## 💼 Experience\n**Investigative Journalist** \nDaily Planet — 2015–Present \n- Reported on major global events with a focus on justice and accountability\n- Conducted in-depth interviews and investigations under tight deadlines\n- Received 'Journalist of the Year' award in 2021\n\n**Freelance Writer** \nVarious Publications — 2012–2015 \n- Contributed articles on science, technology, and human interest stories\n- Developed strong research and narrative storytelling skills\n\n## 🎓 Education\n**B.A. in Journalism** \nMetropolis University — 2008–2012\n\n## 🧠 Skills\n- Investigative Reporting\n- Feature Writing\n- Media Ethics\n- Photography & Editing\n\n## 🌐 Languages\n- English (Native)\n- Kryptonian (Basic)\n\n## 🚀 Career Interests\nSeeking a challenging journalism role focused on social justice, investigative reporting, and impact storytelling. Passionate about uncovering the truth and holding power accountable." }, "workEnv": { "title": "Preferred Work Environment", "enum": [ "onSite", "hybrid", "remote" ], "type": "string", "description": "Please select your preferred work environment", "default": "onSite" }, "workType": { "title": "Preferred Work Type", "enum": [ "fullTime", "partTime", "contract", "internship" ], "type": "string", "description": "Please select your preferred work type", "default": "fullTime" }, "workLocation": { "title": "Location", "type": "string", "description": "Enter the job search location (use the exact name as shown on the [LinkedIn Job Search Page](https://www.linkedin.com/jobs/search))", "default": "Prague, Czechia" }, "prompt": { "title": "Prompt", "type": "string", "description": "Please describe what you are looking for. What kind of role, any important details the AI agent should look for.", "default": "I'm looking for a backend or fullstack engineering role at a tech-driven company where I can take ownership of features, work closely with product teams, and contribute to building scalable, well-tested systems. I'm especially interested in roles that offer learning opportunities in cloud infrastructure, system design, and AI integration." }, "targetNumResults": { "title": "Number Of Results (Max 20)", "type": "integer", "description": "Specify the number of matching job results the AI agent should find.", "default": 10 } } }, "runsResponseSchema": { "type": "object", "properties": { "data": { "type": "object", "properties": { "id": { "type": "string" }, "actId": { "type": "string" }, "userId": { "type": "string" }, "startedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "finishedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "status": { "type": "string", "example": "READY" }, "meta": { "type": "object", "properties": { "origin": { "type": "string", "example": "API" }, "userAgent": { "type": "string" } } }, "stats": { "type": "object", "properties": { "inputBodyLen": { "type": "integer", "example": 2000 }, "rebootCount": { "type": "integer", "example": 0 }, "restartCount": { "type": "integer", "example": 0 }, "resurrectCount": { "type": "integer", "example": 0 }, "computeUnits": { "type": "integer", "example": 0 } } }, "options": { "type": "object", "properties": { "build": { "type": "string", "example": "latest" }, "timeoutSecs": { "type": "integer", "example": 300 }, "memoryMbytes": { "type": "integer", "example": 1024 }, "diskMbytes": { "type": "integer", "example": 2048 } } }, "buildId": { "type": "string" }, "defaultKeyValueStoreId": { "type": "string" }, "defaultDatasetId": { "type": "string" }, "defaultRequestQueueId": { "type": "string" }, "buildNumber": { "type": "string", "example": "1.0.0" }, "containerUrl": { "type": "string" }, "usage": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "integer", "example": 1 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } }, "usageTotalUsd": { "type": "number", "example": 0.00005 }, "usageUsd": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "number", "example": 0.00005 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } } } } } } } }}
AI Linkedin Job Search OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for AI Linkedin Job Search from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: