πŸš€ Linkedin Job Scraper - Ultra Fast and Detailed avatar
πŸš€ Linkedin Job Scraper - Ultra Fast and Detailed

Pricing

$0.80 / 1,000 results

Go to Store
πŸš€ Linkedin Job Scraper - Ultra Fast and Detailed

πŸš€ Linkedin Job Scraper - Ultra Fast and Detailed

Developed by

John Patrick Vicente

John Patrick Vicente

Maintained by Community

πŸš€ Fast & Affordable LinkedIn Job Scraper with complete filters & enriched job data - qualifications, application deadline and more. Perfect for job hunters, recruiters and market analysis. Works well with n8n and MCPs

5.0 (1)

Pricing

$0.80 / 1,000 results

2

4

4

Last modified

a day ago

You can access the πŸš€ Linkedin Job Scraper - Ultra Fast and Detailed programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.

{
"openapi": "3.0.1",
"info": {
"version": "1.0",
"x-build-id": "72HHMWVLJ9HPggW8V"
},
"servers": [
{
"url": "https://api.apify.com/v2"
}
],
"paths": {
"/acts/patrickvicente~linkedin-job-scraper---ultra-fast-and-detailed/run-sync-get-dataset-items": {
"post": {
"operationId": "run-sync-get-dataset-items-patrickvicente-linkedin-job-scraper---ultra-fast-and-detailed",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
},
"/acts/patrickvicente~linkedin-job-scraper---ultra-fast-and-detailed/runs": {
"post": {
"operationId": "runs-sync-patrickvicente-linkedin-job-scraper---ultra-fast-and-detailed",
"x-openai-isConsequential": false,
"summary": "Executes an Actor and returns information about the initiated run in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/runsResponseSchema"
}
}
}
}
}
}
},
"/acts/patrickvicente~linkedin-job-scraper---ultra-fast-and-detailed/run-sync": {
"post": {
"operationId": "run-sync-patrickvicente-linkedin-job-scraper---ultra-fast-and-detailed",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
}
},
"components": {
"schemas": {
"inputSchema": {
"type": "object",
"required": [
"mode"
],
"properties": {
"mode": {
"title": "Mode",
"enum": [
"summary",
"detailed"
],
"type": "string",
"description": "Select the mode you want to use, detailed mode will take longer to scrape but will provide more detailed data",
"default": "summary"
},
"keywords": {
"title": "Job Keywords",
"pattern": "^.+$",
"maxLength": 200,
"type": "string",
"description": "Enter job keywords, titles, or skills to search for (e.g., 'software engineer', 'data scientist', 'marketing manager')"
},
"location": {
"title": "Job Location",
"pattern": "^.+$",
"maxLength": 100,
"type": "string",
"description": "Enter the location where you want to find jobs (e.g., 'San Francisco, CA', 'New York, NY', 'Remote')"
},
"job_type": {
"title": "Job Type",
"minItems": 1,
"maxItems": 4,
"type": "array",
"description": "Select the job types you're interested in",
"items": {
"type": "string",
"enum": [
"full-time",
"part-time",
"contract",
"internship"
],
"enumTitles": [
"Full-Time",
"Part-Time",
"Contract",
"Internship"
]
}
},
"experience_level": {
"title": "Experience Level",
"minItems": 1,
"maxItems": 5,
"type": "array",
"description": "Select the experience levels you're interested in",
"items": {
"type": "string",
"enum": [
"entry level",
"mid level",
"mid-senior level",
"director",
"internship"
],
"enumTitles": [
"Entry Level",
"Associate",
"Mid-Senior Level",
"Internship"
]
}
},
"remote_option": {
"title": "Remote Option",
"minItems": 1,
"maxItems": 3,
"type": "array",
"description": "Select the remote options you're interested in",
"items": {
"type": "string",
"enum": [
"on-site",
"hybrid",
"remote"
],
"enumTitles": [
"On-Site",
"Hybrid",
"Remote"
]
}
},
"date_posted": {
"title": "Date Posted",
"enum": [
"any time",
"past 24 hours",
"past week",
"past month"
],
"type": "string",
"description": "Filter jobs by when they were posted"
},
"max_jobs": {
"title": "Maximum Jobs to Scrape",
"minimum": 100,
"maximum": 1000,
"type": "integer",
"description": "Limit the number of jobs to scrape",
"default": 100
},
"slow_mo": {
"title": "Operation Delay",
"minimum": 0,
"maximum": 5000,
"type": "integer",
"description": "Delay between operations in milliseconds (higher values are slower but more reliable)",
"default": 100
},
"timeout": {
"title": "Page Timeout",
"minimum": 10000,
"maximum": 120000,
"type": "integer",
"description": "Timeout for page operations in milliseconds",
"default": 30000
},
"avoid_duplicates": {
"title": "Avoid Duplicates",
"type": "boolean",
"description": "Skip duplicate job postings",
"default": true
},
"skip_description_extraction": {
"title": "Skip Description Extraction",
"type": "boolean",
"description": "Skip description extraction for faster scraping",
"default": false
}
}
},
"runsResponseSchema": {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"actId": {
"type": "string"
},
"userId": {
"type": "string"
},
"startedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"finishedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"status": {
"type": "string",
"example": "READY"
},
"meta": {
"type": "object",
"properties": {
"origin": {
"type": "string",
"example": "API"
},
"userAgent": {
"type": "string"
}
}
},
"stats": {
"type": "object",
"properties": {
"inputBodyLen": {
"type": "integer",
"example": 2000
},
"rebootCount": {
"type": "integer",
"example": 0
},
"restartCount": {
"type": "integer",
"example": 0
},
"resurrectCount": {
"type": "integer",
"example": 0
},
"computeUnits": {
"type": "integer",
"example": 0
}
}
},
"options": {
"type": "object",
"properties": {
"build": {
"type": "string",
"example": "latest"
},
"timeoutSecs": {
"type": "integer",
"example": 300
},
"memoryMbytes": {
"type": "integer",
"example": 1024
},
"diskMbytes": {
"type": "integer",
"example": 2048
}
}
},
"buildId": {
"type": "string"
},
"defaultKeyValueStoreId": {
"type": "string"
},
"defaultDatasetId": {
"type": "string"
},
"defaultRequestQueueId": {
"type": "string"
},
"buildNumber": {
"type": "string",
"example": "1.0.0"
},
"containerUrl": {
"type": "string"
},
"usage": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "integer",
"example": 1
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
},
"usageTotalUsd": {
"type": "number",
"example": 0.00005
},
"usageUsd": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "number",
"example": 0.00005
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
}
}
}
}
}
}
}
}

LinkedIn Job Data Extractor - Fast Recruitment Intelligence OpenAPI definition

OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.

OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.

By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.

You can download the OpenAPI definitions for πŸš€ Linkedin Job Scraper - Ultra Fast and Detailed from the options below:

If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.

You can also check out our other API clients: