
Deep Email, Phone, & Social Media Scraper
Pay $8.00 for 1,000 emails

Deep Email, Phone, & Social Media Scraper
Pay $8.00 for 1,000 emails
A powerful tool that extracts emails, phone numbers, and social media profiles from any website. It intelligently navigates, prioritizing pages likely to have contact info - even deep in the site. Perfect for lead generation, market research, competitive analysis, and building contact databases.
Actor Metrics
94 Monthly users
5.0 / 5 (1)
7 bookmarks
98% runs succeeded
7.5 days response time
Created in Oct 2024
Modified a day ago
You can access the Deep Email, Phone, & Social Media Scraper programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "CdpXXI3RRdhOXqQMZ"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/peterasorensen~snacci/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-peterasorensen-snacci",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/peterasorensen~snacci/runs": {
50 "post": {
51 "operationId": "runs-sync-peterasorensen-snacci",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/peterasorensen~snacci/run-sync": {
93 "post": {
94 "operationId": "run-sync-peterasorensen-snacci",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "websites",
135 "scrapeTypes"
136 ],
137 "properties": {
138 "websites": {
139 "title": "List of Websites",
140 "type": "array",
141 "description": "Provide an array of websites to scrape for emails, phone numbers, and social media handles.",
142 "items": {
143 "type": "string"
144 }
145 },
146 "scrapeTypes": {
147 "title": "Information to Scrape",
148 "type": "array",
149 "description": "Select what types of contact information to scrape from the websites.",
150 "items": {
151 "type": "string",
152 "enum": [
153 "emails",
154 "phoneNumbers",
155 "socialMedia"
156 ],
157 "enumTitles": [
158 "Email Addresses",
159 "Phone Numbers",
160 "Social Media Handles"
161 ]
162 },
163 "default": [
164 "emails",
165 "phoneNumbers",
166 "socialMedia"
167 ]
168 },
169 "removeDuplicates": {
170 "title": "Remove Duplicates",
171 "type": "boolean",
172 "description": "If enabled, removes duplicate contact information even if found on separate webpages. If disabled, outputs all found information including duplicates.",
173 "default": true
174 },
175 "maxDepth": {
176 "title": "Maximum Crawl Depth",
177 "type": "integer",
178 "description": "Maximum depth of pages to crawl from the starting URL. A depth of 0 means only the initial page, 1 means also crawl linked pages, 2 means crawl linked pages and their linked pages, etc.",
179 "default": 2
180 },
181 "maxLinksPerPage": {
182 "title": "Maximum Links per Page",
183 "type": "integer",
184 "description": "Maximum number of links to follow from each page. Set much higher if extracting a people directory or similar.",
185 "default": 200
186 }
187 }
188 },
189 "runsResponseSchema": {
190 "type": "object",
191 "properties": {
192 "data": {
193 "type": "object",
194 "properties": {
195 "id": {
196 "type": "string"
197 },
198 "actId": {
199 "type": "string"
200 },
201 "userId": {
202 "type": "string"
203 },
204 "startedAt": {
205 "type": "string",
206 "format": "date-time",
207 "example": "2025-01-08T00:00:00.000Z"
208 },
209 "finishedAt": {
210 "type": "string",
211 "format": "date-time",
212 "example": "2025-01-08T00:00:00.000Z"
213 },
214 "status": {
215 "type": "string",
216 "example": "READY"
217 },
218 "meta": {
219 "type": "object",
220 "properties": {
221 "origin": {
222 "type": "string",
223 "example": "API"
224 },
225 "userAgent": {
226 "type": "string"
227 }
228 }
229 },
230 "stats": {
231 "type": "object",
232 "properties": {
233 "inputBodyLen": {
234 "type": "integer",
235 "example": 2000
236 },
237 "rebootCount": {
238 "type": "integer",
239 "example": 0
240 },
241 "restartCount": {
242 "type": "integer",
243 "example": 0
244 },
245 "resurrectCount": {
246 "type": "integer",
247 "example": 0
248 },
249 "computeUnits": {
250 "type": "integer",
251 "example": 0
252 }
253 }
254 },
255 "options": {
256 "type": "object",
257 "properties": {
258 "build": {
259 "type": "string",
260 "example": "latest"
261 },
262 "timeoutSecs": {
263 "type": "integer",
264 "example": 300
265 },
266 "memoryMbytes": {
267 "type": "integer",
268 "example": 1024
269 },
270 "diskMbytes": {
271 "type": "integer",
272 "example": 2048
273 }
274 }
275 },
276 "buildId": {
277 "type": "string"
278 },
279 "defaultKeyValueStoreId": {
280 "type": "string"
281 },
282 "defaultDatasetId": {
283 "type": "string"
284 },
285 "defaultRequestQueueId": {
286 "type": "string"
287 },
288 "buildNumber": {
289 "type": "string",
290 "example": "1.0.0"
291 },
292 "containerUrl": {
293 "type": "string"
294 },
295 "usage": {
296 "type": "object",
297 "properties": {
298 "ACTOR_COMPUTE_UNITS": {
299 "type": "integer",
300 "example": 0
301 },
302 "DATASET_READS": {
303 "type": "integer",
304 "example": 0
305 },
306 "DATASET_WRITES": {
307 "type": "integer",
308 "example": 0
309 },
310 "KEY_VALUE_STORE_READS": {
311 "type": "integer",
312 "example": 0
313 },
314 "KEY_VALUE_STORE_WRITES": {
315 "type": "integer",
316 "example": 1
317 },
318 "KEY_VALUE_STORE_LISTS": {
319 "type": "integer",
320 "example": 0
321 },
322 "REQUEST_QUEUE_READS": {
323 "type": "integer",
324 "example": 0
325 },
326 "REQUEST_QUEUE_WRITES": {
327 "type": "integer",
328 "example": 0
329 },
330 "DATA_TRANSFER_INTERNAL_GBYTES": {
331 "type": "integer",
332 "example": 0
333 },
334 "DATA_TRANSFER_EXTERNAL_GBYTES": {
335 "type": "integer",
336 "example": 0
337 },
338 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
339 "type": "integer",
340 "example": 0
341 },
342 "PROXY_SERPS": {
343 "type": "integer",
344 "example": 0
345 }
346 }
347 },
348 "usageTotalUsd": {
349 "type": "number",
350 "example": 0.00005
351 },
352 "usageUsd": {
353 "type": "object",
354 "properties": {
355 "ACTOR_COMPUTE_UNITS": {
356 "type": "integer",
357 "example": 0
358 },
359 "DATASET_READS": {
360 "type": "integer",
361 "example": 0
362 },
363 "DATASET_WRITES": {
364 "type": "integer",
365 "example": 0
366 },
367 "KEY_VALUE_STORE_READS": {
368 "type": "integer",
369 "example": 0
370 },
371 "KEY_VALUE_STORE_WRITES": {
372 "type": "number",
373 "example": 0.00005
374 },
375 "KEY_VALUE_STORE_LISTS": {
376 "type": "integer",
377 "example": 0
378 },
379 "REQUEST_QUEUE_READS": {
380 "type": "integer",
381 "example": 0
382 },
383 "REQUEST_QUEUE_WRITES": {
384 "type": "integer",
385 "example": 0
386 },
387 "DATA_TRANSFER_INTERNAL_GBYTES": {
388 "type": "integer",
389 "example": 0
390 },
391 "DATA_TRANSFER_EXTERNAL_GBYTES": {
392 "type": "integer",
393 "example": 0
394 },
395 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
396 "type": "integer",
397 "example": 0
398 },
399 "PROXY_SERPS": {
400 "type": "integer",
401 "example": 0
402 }
403 }
404 }
405 }
406 }
407 }
408 }
409 }
410 }
411}
Deep Email, Phone, & Social Media Web Scraper - Lead Finder OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Deep Email, Phone, & Social Media Scraper from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: