Mastodon Federation Intelligence Pro avatar
Mastodon Federation Intelligence Pro

Under maintenance

Pricing

$25.00/month + usage

Go to Store
Mastodon Federation Intelligence Pro

Mastodon Federation Intelligence Pro

Under maintenance

Developed by

AutomateLab

AutomateLab

Maintained by Community

The #1 Academic Research Platform for studying decentralized social networks across 1000+ Mastodon instances with comprehensive federation analytics, ethical research compliance, and university budget-friendly subscription pricing.

0.0 (0)

Pricing

$25.00/month + usage

0

Total users

1

Monthly users

1

Last modified

4 days ago

You can access the Mastodon Federation Intelligence Pro programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.

{
"openapi": "3.0.1",
"info": {
"version": "1.0",
"x-build-id": "OUxpLhs0IlfUKOpga"
},
"servers": [
{
"url": "https://api.apify.com/v2"
}
],
"paths": {
"/acts/red.cars~mastodon-federation-intelligence-pro/run-sync-get-dataset-items": {
"post": {
"operationId": "run-sync-get-dataset-items-red.cars-mastodon-federation-intelligence-pro",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
},
"/acts/red.cars~mastodon-federation-intelligence-pro/runs": {
"post": {
"operationId": "runs-sync-red.cars-mastodon-federation-intelligence-pro",
"x-openai-isConsequential": false,
"summary": "Executes an Actor and returns information about the initiated run in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/runsResponseSchema"
}
}
}
}
}
}
},
"/acts/red.cars~mastodon-federation-intelligence-pro/run-sync": {
"post": {
"operationId": "run-sync-red.cars-mastodon-federation-intelligence-pro",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
}
},
"components": {
"schemas": {
"inputSchema": {
"type": "object",
"required": [
"instances",
"extractionMode"
],
"properties": {
"instances": {
"title": "Academic Research Instances",
"minItems": 1,
"maxItems": 100,
"type": "array",
"description": "Mastodon instances for your computational social science study. Popular academic instances: scholar.social, fediscience.org, akademienl.social. Supports 1000+ instances for comprehensive federation research.",
"items": {
"type": "string"
}
},
"extractionMode": {
"title": "Research Mode",
"enum": [
"academic_research",
"federation_analysis",
"community_intelligence",
"brand_monitoring"
],
"type": "string",
"description": "Select your academic research methodology and data collection approach",
"default": "academic_research"
},
"searchTerms": {
"title": "Research Keywords",
"type": "array",
"description": "Keywords for your academic study (research topics, platform migration terms, computational social science concepts)",
"items": {
"type": "string"
}
},
"hashtags": {
"title": "Research Hashtags",
"type": "array",
"description": "Academic hashtags to track for your study (without # symbol)",
"items": {
"type": "string"
}
},
"usernames": {
"title": "Research Accounts",
"type": "array",
"description": "Specific academic accounts or research institutions to include in your study (without @ symbol)",
"items": {
"type": "string"
}
},
"timeRange": {
"title": "Study Time Period",
"enum": [
"24h",
"7d",
"30d",
"90d",
"all"
],
"type": "string",
"description": "Data collection period for your research study (longitudinal studies supported)",
"default": "30d"
},
"maxPosts": {
"title": "Research Sample Size",
"minimum": 100,
"maximum": 100000,
"type": "integer",
"description": "Maximum posts for your study (unlimited academic extraction - up to 100,000 posts vs Communalytic's 50,000 limit). Perfect for large-scale computational social science research.",
"default": 50000
},
"includeReplies": {
"title": "Include Replies",
"type": "boolean",
"description": "Include reply posts in the analysis",
"default": true
},
"includeBoosts": {
"title": "Include Boosts/Reblogs",
"type": "boolean",
"description": "Include boosted/reblogged posts in the analysis",
"default": true
},
"outputFormat": {
"title": "Academic Output Format",
"enum": [
"csv",
"json",
"xlsx"
],
"type": "string",
"description": "Research-ready data export format for statistical analysis and publication",
"default": "csv"
},
"proxyConfiguration": {
"title": "Proxy Configuration",
"type": "object",
"description": "Proxy settings for reliable data collection"
}
}
},
"runsResponseSchema": {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"actId": {
"type": "string"
},
"userId": {
"type": "string"
},
"startedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"finishedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"status": {
"type": "string",
"example": "READY"
},
"meta": {
"type": "object",
"properties": {
"origin": {
"type": "string",
"example": "API"
},
"userAgent": {
"type": "string"
}
}
},
"stats": {
"type": "object",
"properties": {
"inputBodyLen": {
"type": "integer",
"example": 2000
},
"rebootCount": {
"type": "integer",
"example": 0
},
"restartCount": {
"type": "integer",
"example": 0
},
"resurrectCount": {
"type": "integer",
"example": 0
},
"computeUnits": {
"type": "integer",
"example": 0
}
}
},
"options": {
"type": "object",
"properties": {
"build": {
"type": "string",
"example": "latest"
},
"timeoutSecs": {
"type": "integer",
"example": 300
},
"memoryMbytes": {
"type": "integer",
"example": 1024
},
"diskMbytes": {
"type": "integer",
"example": 2048
}
}
},
"buildId": {
"type": "string"
},
"defaultKeyValueStoreId": {
"type": "string"
},
"defaultDatasetId": {
"type": "string"
},
"defaultRequestQueueId": {
"type": "string"
},
"buildNumber": {
"type": "string",
"example": "1.0.0"
},
"containerUrl": {
"type": "string"
},
"usage": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "integer",
"example": 1
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
},
"usageTotalUsd": {
"type": "number",
"example": 0.00005
},
"usageUsd": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "number",
"example": 0.00005
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
}
}
}
}
}
}
}
}

Mastodon Federation Intelligence Pro OpenAPI definition

OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.

OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.

By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.

You can download the OpenAPI definitions for Mastodon Federation Intelligence Pro from the options below:

If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.

You can also check out our other API clients: