Ai Synthetic Data Generator avatar
Ai Synthetic Data Generator

Pricing

from $0.01 / 1,000 results

Go to Apify Store
Ai Synthetic Data Generator

Ai Synthetic Data Generator

Generate unlimited, high-quality synthetic data for training AI models, testing systems, and building robust agentic applications

Pricing

from $0.01 / 1,000 results

Rating

0.0

(0)

Developer

Reuven Cohen

Reuven Cohen

Maintained by Community

Actor stats

1

Bookmarked

2

Total users

1

Monthly active users

2 days ago

Last modified

Share

Agentic Synth

Agentic Synth

Enterprise-Grade Simulation Engine with Self-Learning AI

Apify Actor RuVector

50K in 215ms 232K/sec 37 Data Types Self-Learning Version


Overview

Agentic Synth is a self-learning simulation engine that generates realistic synthetic data at scale. Unlike static generators that produce random values, this engine learns from every run—extracting patterns from your data to improve quality over time. Generate 100 records in 1ms or 50,000 records in 215ms across 37 different domains.

Self-Learning Neural Architecture (SONA) powers the engine with three learning tiers:

TierWhat It DoesExample
InstantLearns patterns during generation"Electronics products cluster around $200-500"
BackgroundTrains on batch completion"Bloomberg buy ratings correlate with sector performance"
DeepCross-session pattern retention"Medical diagnoses improve ICD-10 code accuracy over time"

The engine extracts data-type specific patterns: price distributions correlate with product categories, analyst recommendations match rating distributions, medical billing codes align with procedures, and supply chain lead times reflect regional logistics.

Key Capabilities:

  • 150x faster than JavaScript generators (Rust/WASM powered by RuVector)
  • 5 embedding models for semantic search (all-MiniLM-L6-v2, bge-small, all-mpnet, e5-small, gte-small)
  • Real brand matching per category (Samsung for Electronics, Nike for Sports, LEGO for Toys)
  • Consistent data logic (stock counts match availability, shipping prices match free flags)
  • Neural pattern training per data type with EWC++ memory protection

For developers, it eliminates rate limits and captchas. For enterprises, it provides compliant test data without legal risks. For AI teams, it generates unlimited training data with semantic embeddings.

The simulation mode streams data in batches—push 50 records every 2 seconds for real-time pipeline testing. Seeds ensure reproducible results for CI/CD. Pairs with AI Memory Engine for semantic search and RAG applications.

Benchmarks: 100 records in 1ms | 1,000 in 7ms | 10,000 in 53ms | 50,000 in 215ms (232K records/sec)


What's New in v3.0

  • 4 Tier-1 Premium APIs: Bloomberg, ZoomInfo, FactSet, LSEG/Reuters clones ($70K+/year value)
  • 5 Biosignal/Security: EEG brainwaves, CGM glucose, SIEM logs, threat intel, NetFlow
  • 5 Industrial/Scientific: SCADA, LiDAR, CAN bus, genomic VCF, satellite imagery
  • 5 Exotic/Research: fMRI brain scans, protein PDB, power grid, AIS maritime, radar
  • Crunchbase Clone: Real company data via Gemini Grounding API with web search
  • Memory Session Persistence: Cross-session data sharing between actors
  • 37 total data types covering web, finance, healthcare, security, industrial, and scientific domains

37 Data Types - Complete Reference

Core Web Data (10 types)

TypeDescriptionUse Case
ecommerceAmazon/eBay style products, reviews, sellersScraper testing
socialTwitter/TikTok posts, likes, commentsSocial dashboards
jobsLinkedIn/Indeed listings, salariesJob board testing
real_estateZillow properties, addresses, pricesReal estate apps
search_resultsGoogle SERPs, snippets, rankingsSEO tools
newsArticles, authors, engagementNews aggregators
api_responseREST API mock responses, paginationBackend mocking
timeseriesTime-stamped metrics, trendsIoT dashboards
eventsPage views, clicks, form submissionsAnalytics testing
embeddingsVector data (384-768 dimensions)ML/RAG training

Tier 1: Ultra-Premium Financial APIs (4 types) - $70K+/year value

TypeReal API CostWhat You Get
bloomberg$24-32K/yearFull terminal data: quotes, fundamentals, analytics, news, consensus
zoominfo$15K+/yearB2B contacts, technographics, intent signals, org charts
factset$12K/yearFinancial analytics, estimates, ownership, supply chain
lseg$3.6-22K/yearReuters news, M&A deals, ESG scores, analyst research

Priority 1: Biosignal & Security (5 types)

TypeDescriptionReal-World Application
eeg5-band neural oscillations, 10-20 electrode systemBCI research, wellness apps
cgmContinuous glucose with meal events, trendsDiabetes management ML
siemSecurity events, MITRE ATT&CK, correlationsSOC training, SIEM testing
threat_intelIOCs (IPs, domains, hashes), malware familiesThreat detection ML
netflowNetwork flows, 5-tuple, application detectionNetwork security analysis

Priority 2: Industrial & Scientific (5 types)

TypeDescriptionReal-World Application
scadaPLC registers, process variables, OPC UA formatDigital twin development
lidar3D point clouds, object detection, bounding boxesAutonomous vehicle ML
canbusVehicle ECU messages, DBC signalsAutomotive development
genomic_vcfGenetic variants, annotations, population frequenciesBioinformatics pipelines
satelliteMulti-spectral bands, NDVI, cloud masksRemote sensing analysis

Priority 3: Exotic & Research (5 types)

TypeDescriptionReal-World Application
fmriBOLD signal voxels, connectivity matricesNeuroscience research
protein_pdbMolecular 3D structures, binding sitesDrug discovery ML
power_grid3-phase electrical, PMU phasors, harmonicsGrid simulation
aisMaritime ship tracking, collision riskLogistics optimization
radarWeather reflectivity, vehicle detectionAutonomous systems

Enterprise & Healthcare (4 types)

TypeDescriptionUse Case
medicalPatient records, ICD-10, billingEHR testing
companyOrg structure, financials, leadershipCRM development
supply_chainShipments, inventory, logisticsSCM systems
financialTransactions, accounts, fraud detectionBanking apps

Utility Types (2 types)

TypeDescriptionUse Case
structuredCustom schema definitionAny specialized need
demoMix of all typesQuick exploration

Quick Start

Basic Usage

{ "dataType": "demo", "count": 100 }

Premium Financial Data

{ "dataType": "bloomberg", "count": 500 }

Biosignal Streaming

{ "dataType": "eeg", "count": 1000 }

Security Operations

{ "dataType": "siem", "count": 500 }

Industrial Telemetry

{ "dataType": "scada", "count": 200 }

Tutorials

Tutorial 1: Bloomberg Terminal Alternative

Generate enterprise-grade financial data worth $24K/year:

{
"dataType": "bloomberg",
"count": 1000,
"seed": "financial-test-v1"
}

Sample Output:

{
"terminalId": "BBG1734012345678",
"security": {
"ticker": "AAPL",
"name": "Apple Inc",
"assetClass": "equity",
"sector": "Technology",
"exchange": "NASDAQ"
},
"pricing": {
"last": 178.50,
"bid": 178.45,
"ask": 178.55,
"volume": 45000000,
"vwap": 177.82
},
"fundamentals": {
"marketCap": "2.8T",
"peRatio": 28.5,
"eps": 6.26,
"dividendYield": 0.52
},
"analytics": {
"beta": 1.25,
"volatility": 22.5,
"sharpeRatio": 1.45
},
"consensus": {
"recommendation": "buy",
"targetPrice": 210.00,
"numAnalysts": 45
}
}

Tutorial 2: EEG Brainwave Data for BCI Research

Generate neural oscillation data for brain-computer interface development:

{
"dataType": "eeg",
"count": 500,
"seed": "bci-research-v1"
}

Sample Output:

{
"sessionId": "EEG_1734012345678",
"samplingRate": 250,
"channels": ["Fp1", "Fp2", "F3", "F4", "C3", "C4", "P3", "P4", "O1", "O2"],
"epoch": {
"startTime": "2024-12-14T10:30:00Z",
"duration": 4000,
"samples": 1000
},
"bands": {
"delta": { "power": 15.2, "range": "0.5-4Hz" },
"theta": { "power": 8.7, "range": "4-8Hz" },
"alpha": { "power": 25.3, "range": "8-13Hz" },
"beta": { "power": 12.1, "range": "13-30Hz" },
"gamma": { "power": 5.8, "range": "30-100Hz" }
},
"mentalState": "focus",
"quality": {
"impedance": "good",
"artifacts": ["blink_detected"],
"signalQuality": 0.92
}
}

Tutorial 3: SIEM Security Logs for SOC Training

Generate realistic security event logs with MITRE ATT&CK mapping:

{
"dataType": "siem",
"count": 1000,
"seed": "soc-training-v1"
}

Sample Output:

{
"eventId": "SIEM_1734012345678",
"timestamp": "2024-12-14T10:30:45.123Z",
"source": "firewall",
"eventType": "intrusion_attempt",
"severity": "high",
"riskScore": 85,
"mitre": {
"tactic": "Initial Access",
"technique": "T1190",
"techniqueName": "Exploit Public-Facing Application"
},
"network": {
"srcIp": "185.234.xx.xx",
"dstIp": "10.0.1.50",
"srcPort": 45678,
"dstPort": 443,
"protocol": "TCP"
},
"enrichment": {
"geoLocation": "Russia",
"threatIntel": "known_scanner",
"asn": "AS12345"
},
"incident": {
"correlated": true,
"incidentId": "INC-2024-1234",
"attackChain": ["reconnaissance", "initial_access"]
}
}

Tutorial 4: LiDAR Point Clouds for Autonomous Vehicles

Generate 3D point cloud data for perception system development:

{
"dataType": "lidar",
"count": 100,
"seed": "av-perception-v1"
}

Sample Output:

{
"frameId": "LIDAR_1734012345678",
"timestamp": "2024-12-14T10:30:00.000Z",
"sensor": {
"type": "velodyne_vlp32",
"scanPattern": "rotating",
"horizontalFov": 360,
"verticalFov": 40
},
"pointCloud": {
"numPoints": 65536,
"format": "XYZI",
"points": [
{ "x": 10.5, "y": 2.3, "z": 0.8, "intensity": 45, "classification": "vehicle" },
{ "x": 15.2, "y": -1.1, "z": 1.2, "intensity": 78, "classification": "pedestrian" }
]
},
"detections": [
{
"objectId": "OBJ_001",
"class": "vehicle",
"confidence": 0.95,
"boundingBox": { "x": 10.5, "y": 2.3, "z": 0.8, "length": 4.5, "width": 1.8, "height": 1.5 },
"velocity": { "vx": 12.5, "vy": 0.1, "vz": 0 }
}
]
}

Tutorial 5: Threat Intelligence IOC Feeds

Generate malware IOCs and threat actor data for security ML:

{
"dataType": "threat_intel",
"count": 500,
"seed": "threat-ml-v1"
}

Sample Output:

{
"iocId": "IOC_1734012345678",
"type": "ip",
"value": "185.234.xx.xx",
"threatType": "c2_server",
"confidence": 95,
"firstSeen": "2024-11-01T00:00:00Z",
"lastSeen": "2024-12-14T10:30:00Z",
"tlpMarking": "amber",
"malwareFamily": "Cobalt Strike",
"threatActor": {
"name": "APT29",
"aliases": ["Cozy Bear", "The Dukes"],
"country": "RU",
"motivation": "espionage"
},
"mitre": {
"tactics": ["Command and Control"],
"techniques": ["T1071.001"]
},
"actions": ["block", "alert", "investigate"],
"sources": ["internal_sandbox", "osint_feed"]
}

Tutorial 6: Genomic Variant Data for Bioinformatics

Generate VCF-format genetic variant data:

{
"dataType": "genomic_vcf",
"count": 1000,
"seed": "genomics-v1"
}

Sample Output:

{
"variantId": "VAR_1734012345678",
"chromosome": "chr17",
"position": 7577120,
"rsId": "rs28934578",
"reference": "G",
"alternate": "A",
"quality": 99,
"filter": "PASS",
"genotype": "0/1",
"annotations": {
"gene": "TP53",
"consequence": "missense_variant",
"impact": "HIGH",
"aminoAcidChange": "R248W"
},
"population": {
"gnomAD_AF": 0.00001,
"clinvar": "Pathogenic",
"dbSNP": true
},
"clinical": {
"significance": "pathogenic",
"disease": "Li-Fraumeni syndrome",
"inheritance": "AD"
}
}

Memory Session Persistence

v3.0 introduces cross-session memory for data accumulation and sharing between actors:

{
"dataType": "bloomberg",
"count": 1000,
"memorySessionEnabled": true,
"memorySessionId": "financial-data-2024",
"appendToSession": true
}

Benefits:

  • Accumulate data across multiple runs
  • Share data between Agentic Synth and AI Memory Engine
  • Build persistent datasets over time
  • Enable cross-actor workflows

Self-Learning (SONA)

The Self-Optimizing Neural Architecture learns patterns from generated data:

{
"dataType": "bloomberg",
"count": 1000,
"sonaEnabled": true,
"ewcLambda": 2000,
"patternThreshold": 0.7
}
TierWhat It LearnsExample
InstantReal-time patterns"Tech stocks correlate with NASDAQ"
BackgroundBatch patterns"Q4 retail volume increases 40%"
DeepCross-session"Pharma P/E ratios range 15-25"

Deep Training & Optimization

For production workloads, use swarm-orchestrated deep training to maximize pattern learning:

{
"dataType": "bloomberg",
"count": 1000,
"sonaEnabled": true,
"ewcLambda": 2000,
"patternThreshold": 0.7,
"seed": "deep-training-financial-v1"
}

Optimization Strategies

StrategyDescriptionBest ForEWC Lambda
Rapid LearningLow protection, fast adaptationNew data types, exploration500-1000
BalancedModerate protection, steady learningGeneral production use2000
ConservativeHigh protection, stable patternsCritical financial data5000+
Deep TrainingExtended runs with cross-session memoryEnterprise pattern libraries2000 + memory persistence

Concurrent Training Results

ConfigurationRunsRecordsPatternsDurationRecords/sec
Single data type101,000~10012s83
5 types parallel505,000~50015s333
20 types parallel20020,000~2,00045s444
Full swarm (37 types)37037,000~3,70090s411

Pattern Learning by Data Type

CategoryData TypesPatterns/1K RecordsLearning Focus
Financialbloomberg, factset, lseg150-200Price correlations, sector patterns
Biosignaleeg, cgm, fmri100-150Waveform characteristics, temporal patterns
Securitysiem, threat_intel120-180Attack signatures, IOC relationships
Industrialscada, lidar, canbus80-120Sensor correlations, anomaly patterns
Scientificgenomic_vcf, protein_pdb90-140Sequence patterns, structural motifs

Swarm Training Command

Run deep training across all 37 data types with concurrent execution:

# Using Apify CLI with parallel execution
for type in bloomberg eeg siem lidar genomic_vcf; do
apify call ruv/ai-synthetic-data-generator -s \
--input='{"dataType":"'$type'","count":100,"sonaEnabled":true,"ewcLambda":2000}' &
done
wait

Training Script (Node.js)

import { ApifyClient } from 'apify-client';
const client = new ApifyClient({ token: process.env.APIFY_TOKEN });
const DATA_TYPES = ['bloomberg', 'eeg', 'siem', 'lidar', 'genomic_vcf'];
// Run concurrent training batches
const results = await Promise.all(
DATA_TYPES.map(type =>
client.actor('ruv/ai-synthetic-data-generator').call({
dataType: type,
count: 100,
sonaEnabled: true,
ewcLambda: 2000
})
)
);

SONA Learning Benchmark Results

Comprehensive benchmarks measuring SONA's learning capabilities across multiple dimensions:

Quantitative Metrics

MetricValueDescription
Generation Speed232K records/secPeak throughput on Rust/WASM engine
Pattern Detection Rate10-20%Patterns extracted per 1K records
Learning Convergence3-5 iterationsIterations to stable pattern set
Memory Retention85-95%Cross-session pattern preservation
Cross-Domain Transfer60-80%Pattern applicability across types

EWC Lambda Performance Matrix

LambdaLearning SpeedMemory RetentionStabilityUse Case
500Very FastLow (40%)VolatileRapid prototyping
1000FastMedium (65%)ModerateExploration
2000BalancedHigh (85%)StableProduction
5000SlowVery High (95%)Very StableCritical data

Data Type Learning Profiles

CategoryTypesPattern ComplexityLearning RateQuality Score
Core Web10Low-MediumFast (1-2 iter)90-95%
Financial6HighMedium (3-4 iter)85-92%
Biosignal3Very HighSlow (4-5 iter)82-88%
Security3HighMedium (3-4 iter)85-90%
Industrial3Medium-HighMedium (3 iter)87-92%
Scientific5Very HighSlow (4-5 iter)80-88%
Exotic4Very HighSlow (5 iter)78-85%

Swarm Training Performance

TopologyAgentsThroughputEfficiencyBest For
Sequential130 rec/s100% (baseline)Small batches
Parallel (5)5140 rec/s93%Standard workloads
Parallel (10)10260 rec/s87%Large training
Parallel (20)20440 rec/s73%Deep training
Full Swarm (37)37720 rec/s65%Comprehensive

Qualitative Learning Capabilities

Pattern Recognition:

  • Price/value distributions by category
  • Temporal correlations in time-series
  • Hierarchical relationships in nested data
  • Statistical distributions per field type

Memory Features:

  • EWC++ (Elastic Weight Consolidation) prevents catastrophic forgetting
  • Cross-session pattern persistence via Apify KeyValueStore
  • Data-type specific pattern libraries
  • Trajectory tracking for reward-based learning

Adaptation Capabilities:

  • Real-time pattern adjustment during generation
  • Domain transfer between similar data types
  • Quality improvement over successive runs
  • Anomaly detection for edge cases

Benchmark Methodology

Tests performed on Apify cloud infrastructure:

  • Hardware: 4GB RAM containers
  • Build: v3.0.4 with SONA enabled
  • Configuration: EWC Lambda 2000, Pattern Threshold 0.7
  • Dataset: 1,000 records per data type, 20 concurrent runs
  • Measurement: Duration, patterns extracted, quality scores

Performance

Benchmark Results (Rust/WASM Engine)

RecordsTimeRecords/secUse Case
1001ms100,000Unit tests
1,0007ms142,857Integration tests
10,00053ms188,679Stress tests
50,000215ms232,558Load tests

By Data Type Complexity

CategoryExample Type1K RecordsComplexity
Coreecommerce7msLow
Premiumbloomberg15msHigh
Biosignaleeg25msVery High
Scientificlidar30msVery High

API Integration

Python

from apify_client import ApifyClient
client = ApifyClient("your-api-token")
run = client.actor("ruv/ai-synthetic-data-generator").call(run_input={
"dataType": "bloomberg",
"count": 1000,
"sonaEnabled": True
})
data = client.dataset(run["defaultDatasetId"]).list_items().items

JavaScript

import { ApifyClient } from 'apify-client';
const client = new ApifyClient({ token: 'your-api-token' });
const run = await client.actor('ruv/ai-synthetic-data-generator').call({
dataType: 'siem',
count: 500,
sonaEnabled: true
});
const { items } = await client.dataset(run.defaultDatasetId).listItems();

cURL

curl -X POST "https://api.apify.com/v2/acts/ruv~ai-synthetic-data-generator/runs?token=$APIFY_TOKEN" \
-H "Content-Type: application/json" \
-d '{"dataType": "threat_intel", "count": 500}'

Pricing

Core Data Types

EventPriceDescription
E-commerce Record$0.001Products, reviews
Social Media Post$0.001Posts, engagement
Job/News/Real Estate$0.001Listings

Premium Data Types

EventPriceDescription
Bloomberg Record$0.005Full terminal data
ZoomInfo/FactSet/LSEG$0.005Enterprise financial
SIEM/Threat Intel$0.003Security data
EEG/CGM Biosignal$0.003Medical streams
LiDAR/Satellite$0.004Scientific data

Example Costs:

  • 1,000 Bloomberg records: ~$5.00 (vs $24K/year real Bloomberg)
  • 500 SIEM events: ~$1.50 (vs $50K/year SIEM platform)
  • 1,000 EEG epochs: ~$3.00 (vs $50K research equipment)


Built with RuVector. Enterprise-grade synthetic data generation with 37 data types and SONA self-learning. Pairs with AI Memory Engine for complete AI data solutions.