
Pinecone GPT Chatbot
No credit card required

Pinecone GPT Chatbot
No credit card required
Pinecone GPT Chatbot combines OpenAI's GPT models with Pinecone's database to generate insightful responses. Its interactive chatbot interface presents precise and comprehensive answers to user queries. Benefit from semantic understanding, efficient workflows, and enriched knowledge integration!
Actor Metrics
11 monthly users
4.5 / 5 (4)
9 bookmarks
0% runs succeeded
33 days response time
Created in May 2024
Modified 6 months ago
You can access the Pinecone GPT Chatbot programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "71bNZbdIryGUDtYXn"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/tri_angle~pinecone-gpt-chatbot/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-tri_angle-pinecone-gpt-chatbot",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/tri_angle~pinecone-gpt-chatbot/runs": {
50 "post": {
51 "operationId": "runs-sync-tri_angle-pinecone-gpt-chatbot",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/tri_angle~pinecone-gpt-chatbot/run-sync": {
93 "post": {
94 "operationId": "run-sync-tri_angle-pinecone-gpt-chatbot",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "openaiApiKey",
135 "pineconeApiKey",
136 "pineconeIndexName",
137 "gptModel",
138 "temperature"
139 ],
140 "properties": {
141 "openaiApiKey": {
142 "title": "OpenAI API key",
143 "type": "string",
144 "description": "Your OpenAI API key. You can get it from: https://platform.openai.com/api-keys"
145 },
146 "pineconeApiKey": {
147 "title": "Pinecone API key",
148 "type": "string",
149 "description": "Your Pinecone API key."
150 },
151 "pineconeIndexName": {
152 "title": "Pinecone index name",
153 "pattern": "^[-a-z0-9]+$",
154 "type": "string",
155 "description": "The name of the Pinecone index where the relevant vectors are stored. You can use our [WCC Pinecone Integration](https://apify.com/tri_angle/wcc-pinecone-integration) to crawl a website and store its content in your Pinecone index."
156 },
157 "gptModel": {
158 "title": "GPT model",
159 "enum": [
160 "gpt-4-turbo",
161 "gpt-3.5-turbo"
162 ],
163 "type": "string",
164 "description": "The ID of the GPT model you want to use.",
165 "default": "gpt-4-turbo"
166 },
167 "temperature": {
168 "title": "Temperature",
169 "type": "string",
170 "description": "The temperature parameter for the GPT model. Use values between \"0\" and \"1\". The temperature controls the randomness of the generated text. Lower values make the text more deterministic, higher values make it more random.",
171 "default": "0.5"
172 },
173 "topKResults": {
174 "title": "Top K results",
175 "minimum": 1,
176 "maximum": 100,
177 "type": "integer",
178 "description": "The number of top K results to fetch from the Pinecone index and use as a context for the GPT model. The higher the number, the more context the model will have to generate the response but it will also take longer.",
179 "default": 10
180 }
181 }
182 },
183 "runsResponseSchema": {
184 "type": "object",
185 "properties": {
186 "data": {
187 "type": "object",
188 "properties": {
189 "id": {
190 "type": "string"
191 },
192 "actId": {
193 "type": "string"
194 },
195 "userId": {
196 "type": "string"
197 },
198 "startedAt": {
199 "type": "string",
200 "format": "date-time",
201 "example": "2025-01-08T00:00:00.000Z"
202 },
203 "finishedAt": {
204 "type": "string",
205 "format": "date-time",
206 "example": "2025-01-08T00:00:00.000Z"
207 },
208 "status": {
209 "type": "string",
210 "example": "READY"
211 },
212 "meta": {
213 "type": "object",
214 "properties": {
215 "origin": {
216 "type": "string",
217 "example": "API"
218 },
219 "userAgent": {
220 "type": "string"
221 }
222 }
223 },
224 "stats": {
225 "type": "object",
226 "properties": {
227 "inputBodyLen": {
228 "type": "integer",
229 "example": 2000
230 },
231 "rebootCount": {
232 "type": "integer",
233 "example": 0
234 },
235 "restartCount": {
236 "type": "integer",
237 "example": 0
238 },
239 "resurrectCount": {
240 "type": "integer",
241 "example": 0
242 },
243 "computeUnits": {
244 "type": "integer",
245 "example": 0
246 }
247 }
248 },
249 "options": {
250 "type": "object",
251 "properties": {
252 "build": {
253 "type": "string",
254 "example": "latest"
255 },
256 "timeoutSecs": {
257 "type": "integer",
258 "example": 300
259 },
260 "memoryMbytes": {
261 "type": "integer",
262 "example": 1024
263 },
264 "diskMbytes": {
265 "type": "integer",
266 "example": 2048
267 }
268 }
269 },
270 "buildId": {
271 "type": "string"
272 },
273 "defaultKeyValueStoreId": {
274 "type": "string"
275 },
276 "defaultDatasetId": {
277 "type": "string"
278 },
279 "defaultRequestQueueId": {
280 "type": "string"
281 },
282 "buildNumber": {
283 "type": "string",
284 "example": "1.0.0"
285 },
286 "containerUrl": {
287 "type": "string"
288 },
289 "usage": {
290 "type": "object",
291 "properties": {
292 "ACTOR_COMPUTE_UNITS": {
293 "type": "integer",
294 "example": 0
295 },
296 "DATASET_READS": {
297 "type": "integer",
298 "example": 0
299 },
300 "DATASET_WRITES": {
301 "type": "integer",
302 "example": 0
303 },
304 "KEY_VALUE_STORE_READS": {
305 "type": "integer",
306 "example": 0
307 },
308 "KEY_VALUE_STORE_WRITES": {
309 "type": "integer",
310 "example": 1
311 },
312 "KEY_VALUE_STORE_LISTS": {
313 "type": "integer",
314 "example": 0
315 },
316 "REQUEST_QUEUE_READS": {
317 "type": "integer",
318 "example": 0
319 },
320 "REQUEST_QUEUE_WRITES": {
321 "type": "integer",
322 "example": 0
323 },
324 "DATA_TRANSFER_INTERNAL_GBYTES": {
325 "type": "integer",
326 "example": 0
327 },
328 "DATA_TRANSFER_EXTERNAL_GBYTES": {
329 "type": "integer",
330 "example": 0
331 },
332 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
333 "type": "integer",
334 "example": 0
335 },
336 "PROXY_SERPS": {
337 "type": "integer",
338 "example": 0
339 }
340 }
341 },
342 "usageTotalUsd": {
343 "type": "number",
344 "example": 0.00005
345 },
346 "usageUsd": {
347 "type": "object",
348 "properties": {
349 "ACTOR_COMPUTE_UNITS": {
350 "type": "integer",
351 "example": 0
352 },
353 "DATASET_READS": {
354 "type": "integer",
355 "example": 0
356 },
357 "DATASET_WRITES": {
358 "type": "integer",
359 "example": 0
360 },
361 "KEY_VALUE_STORE_READS": {
362 "type": "integer",
363 "example": 0
364 },
365 "KEY_VALUE_STORE_WRITES": {
366 "type": "number",
367 "example": 0.00005
368 },
369 "KEY_VALUE_STORE_LISTS": {
370 "type": "integer",
371 "example": 0
372 },
373 "REQUEST_QUEUE_READS": {
374 "type": "integer",
375 "example": 0
376 },
377 "REQUEST_QUEUE_WRITES": {
378 "type": "integer",
379 "example": 0
380 },
381 "DATA_TRANSFER_INTERNAL_GBYTES": {
382 "type": "integer",
383 "example": 0
384 },
385 "DATA_TRANSFER_EXTERNAL_GBYTES": {
386 "type": "integer",
387 "example": 0
388 },
389 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
390 "type": "integer",
391 "example": 0
392 },
393 "PROXY_SERPS": {
394 "type": "integer",
395 "example": 0
396 }
397 }
398 }
399 }
400 }
401 }
402 }
403 }
404 }
405}
💬 Pinecone GPT Chatbot OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Pinecone GPT Chatbot from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: