VADER Sentiment Analyzer avatar

VADER Sentiment Analyzer

Pricing

$3.00/month + usage

Go to Apify Store
VADER Sentiment Analyzer

VADER Sentiment Analyzer

Analyze text sentiment using VADER (Valence Aware Dictionary for Sentiment Reasoning). Fast, accurate sentiment analysis optimized for social media, reviews, and customer feedback. No GPU required.

Pricing

$3.00/month + usage

Rating

0.0

(0)

Developer

Web Harvester

Web Harvester

Maintained by Community

Actor stats

0

Bookmarked

2

Total users

1

Monthly active users

3 days ago

Last modified

Share

😊😐😠 Analyze text sentiment instantly using VADER. Optimized for social media, product reviews, and customer feedback. No GPU required, runs on CPU in milliseconds.

Apify Actor License: MIT

🎯 What This Actor Does

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool specifically tuned for social media. This Actor wraps VADER to provide:

  • Instant Analysis - No model loading, no GPU needed
  • Social Media Optimized - Understands slang, emojis, and emphasis
  • Accurate Scoring - Compound score from -1 (negative) to +1 (positive)
  • Batch Processing - Analyze thousands of texts efficiently

πŸ“Š Understanding the Output

ScoreRangeMeaning
compound-1 to +1Overall sentiment (normalized)
positive0 to 1Proportion of positive words
negative0 to 1Proportion of negative words
neutral0 to 1Proportion of neutral words

Sentiment Classification

Compound ScoreClassification
β‰₯ 0.6Very Positive
0.2 to 0.6Positive
-0.2 to 0.2Neutral
-0.6 to -0.2Negative
≀ -0.6Very Negative

πŸš€ Use Cases

  • Social Media Monitoring - Track brand sentiment on Twitter/X
  • Product Reviews - Analyze Amazon, Yelp, or app store reviews
  • Customer Feedback - Classify support tickets by sentiment
  • Survey Analysis - Quantify open-ended responses
  • Content Moderation - Flag negative or toxic content
  • Market Research - Gauge public opinion on topics

πŸ“₯ Input Options

Direct Text Input

{
"texts": [
"I absolutely love this product! Best purchase ever! 😍",
"Terrible experience, would not recommend.",
"It's okay, nothing special."
]
}

From Apify Dataset

{
"datasetId": "abc123",
"textField": "review_text"
}

βš™οΈ Configuration

ParameterTypeDefaultDescription
textsarray[]Array of text strings to analyze
datasetIdstring-ID of Apify Dataset containing texts
textFieldstringtextField name containing text in dataset
batchSizeinteger100Texts per batch for saving

πŸ“€ Output

{
"text": "I absolutely love this product! Best purchase ever! 😍",
"textPreview": "I absolutely love this product! Best purchase ever! 😍",
"compound": 0.9231,
"positive": 0.567,
"negative": 0.0,
"neutral": 0.433,
"sentiment": "very_positive",
"confidence": "high",
"analyzedAt": "2024-01-15T10:30:00.000Z"
}

πŸ§ͺ Examples

VADER's Special Handling

# Capitalization for emphasis
"This is GREAT!" β†’ compound: 0.6588
"This is great" β†’ compound: 0.6249
# Exclamation marks intensify
"This is great!" β†’ compound: 0.6588
"This is great!!" β†’ compound: 0.7003
# Emojis are understood
"I love it 😊" β†’ compound: 0.7845
"I hate it 😠" β†’ compound: -0.7845
# Slang and abbreviations
"This is lit πŸ”₯" β†’ compound: 0.4215
"lol so funny" β†’ compound: 0.4215

πŸš€ Quick Start

Using Apify Console

  1. Paste your texts as JSON array
  2. Or enter a Dataset ID
  3. Click Start
  4. View results in Dataset tab

Using Apify API

curl -X POST "https://api.apify.com/v2/acts/YOUR_USERNAME~sentiment-analyzer/runs?token=YOUR_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"texts": [
"Best product ever!",
"Worst experience of my life",
"It works fine I guess"
]
}'

Using Python

from apify_client import ApifyClient
client = ApifyClient('YOUR_TOKEN')
# Analyze texts
run = client.actor('YOUR_USERNAME/sentiment-analyzer').call(run_input={
'texts': [
'Great customer service!',
'Product broke after one day',
'Average quality for the price'
]
})
# Get results
items = client.dataset(run['defaultDatasetId']).list_items().items
for item in items:
print(f"{item['sentiment']}: {item['textPreview']}")

Using JavaScript

import { ApifyClient } from 'apify-client';
const client = new ApifyClient({ token: 'YOUR_TOKEN' });
const run = await client.actor('YOUR_USERNAME/sentiment-analyzer').call({
texts: [
'Amazing experience!',
'Terrible waste of money',
'It is what it is'
]
});
const { items } = await client.dataset(run.defaultDatasetId).listItems();
console.log(items);

πŸ”— Integration Pipeline Example

// 1. Scrape reviews
const scrapeRun = await client.actor('apify/web-scraper').call({
startUrls: [{ url: 'https://example.com/reviews' }],
pageFunction: async ({ $ }) => {
return $('.review').map((i, el) => ({
text: $(el).find('.review-text').text()
})).get();
}
});
// 2. Analyze sentiment
const sentimentRun = await client.actor('YOUR_USERNAME/sentiment-analyzer').call({
datasetId: scrapeRun.defaultDatasetId,
textField: 'text'
});
// 3. Get results
const { items } = await client.dataset(sentimentRun.defaultDatasetId).listItems();
const stats = items.reduce((acc, item) => {
acc[item.sentiment] = (acc[item.sentiment] || 0) + 1;
return acc;
}, {});
console.log('Sentiment Distribution:', stats);

πŸ’° Cost Estimation

TextsApprox. TimeCompute Units
100~2 seconds~0.001
1,000~5 seconds~0.002
10,000~30 seconds~0.01
100,000~3 minutes~0.08

VADER is extremely efficient - no model loading, no GPU, instant results.

πŸ“ˆ Accuracy

VADER was validated on social media text and achieves:

  • F1 Score: 0.96 on product reviews
  • Accuracy: 84% on Twitter sentiment
  • Correlation: 0.88 with human raters

⚠️ Limitations

  • English Only - VADER is optimized for English text
  • Short Text - Best for tweets, reviews, comments (not long documents)
  • Context - May miss sarcasm or domain-specific language
  • Slang Evolution - Lexicon may not include newest slang

For multilingual or complex analysis, consider BERT-based models.

πŸ”§ Technical Details

  • Language: Python 3.12
  • Library: vaderSentiment 3.3.2
  • Memory: 128MB-256MB
  • Speed: ~10,000 texts/second

πŸ†š VADER vs. Other Methods

MethodSpeedAccuracyLanguagesGPU
VADER⚑ InstantGoodEnglishNo
BERTSlowExcellentManyYes
TextBlobFastFairEnglishNo
GPT-4Very SlowExcellentManyNo*

*API-based, expensive for high volume

πŸ“„ License

MIT License - see LICENSE for details.


πŸͺ Apify Store Listing


Keywords: sentiment analysis, VADER, text analysis, opinion mining, social media analysis, product review analysis, customer feedback, NLP, natural language processing, emotion detection, polarity detection, brand monitoring