VADER Sentiment Analyzer
Pricing
$3.00/month + usage
VADER Sentiment Analyzer
Analyze text sentiment using VADER (Valence Aware Dictionary for Sentiment Reasoning). Fast, accurate sentiment analysis optimized for social media, reviews, and customer feedback. No GPU required.
Pricing
$3.00/month + usage
Rating
0.0
(0)
Developer

Web Harvester
Actor stats
0
Bookmarked
2
Total users
1
Monthly active users
3 days ago
Last modified
Categories
Share
πππ Analyze text sentiment instantly using VADER. Optimized for social media, product reviews, and customer feedback. No GPU required, runs on CPU in milliseconds.
π― What This Actor Does
VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool specifically tuned for social media. This Actor wraps VADER to provide:
- Instant Analysis - No model loading, no GPU needed
- Social Media Optimized - Understands slang, emojis, and emphasis
- Accurate Scoring - Compound score from -1 (negative) to +1 (positive)
- Batch Processing - Analyze thousands of texts efficiently
π Understanding the Output
| Score | Range | Meaning |
|---|---|---|
compound | -1 to +1 | Overall sentiment (normalized) |
positive | 0 to 1 | Proportion of positive words |
negative | 0 to 1 | Proportion of negative words |
neutral | 0 to 1 | Proportion of neutral words |
Sentiment Classification
| Compound Score | Classification |
|---|---|
| β₯ 0.6 | Very Positive |
| 0.2 to 0.6 | Positive |
| -0.2 to 0.2 | Neutral |
| -0.6 to -0.2 | Negative |
| β€ -0.6 | Very Negative |
π Use Cases
- Social Media Monitoring - Track brand sentiment on Twitter/X
- Product Reviews - Analyze Amazon, Yelp, or app store reviews
- Customer Feedback - Classify support tickets by sentiment
- Survey Analysis - Quantify open-ended responses
- Content Moderation - Flag negative or toxic content
- Market Research - Gauge public opinion on topics
π₯ Input Options
Direct Text Input
{"texts": ["I absolutely love this product! Best purchase ever! π","Terrible experience, would not recommend.","It's okay, nothing special."]}
From Apify Dataset
{"datasetId": "abc123","textField": "review_text"}
βοΈ Configuration
| Parameter | Type | Default | Description |
|---|---|---|---|
texts | array | [] | Array of text strings to analyze |
datasetId | string | - | ID of Apify Dataset containing texts |
textField | string | text | Field name containing text in dataset |
batchSize | integer | 100 | Texts per batch for saving |
π€ Output
{"text": "I absolutely love this product! Best purchase ever! π","textPreview": "I absolutely love this product! Best purchase ever! π","compound": 0.9231,"positive": 0.567,"negative": 0.0,"neutral": 0.433,"sentiment": "very_positive","confidence": "high","analyzedAt": "2024-01-15T10:30:00.000Z"}
π§ͺ Examples
VADER's Special Handling
# Capitalization for emphasis"This is GREAT!" β compound: 0.6588"This is great" β compound: 0.6249# Exclamation marks intensify"This is great!" β compound: 0.6588"This is great!!" β compound: 0.7003# Emojis are understood"I love it π" β compound: 0.7845"I hate it π " β compound: -0.7845# Slang and abbreviations"This is lit π₯" β compound: 0.4215"lol so funny" β compound: 0.4215
π Quick Start
Using Apify Console
- Paste your texts as JSON array
- Or enter a Dataset ID
- Click Start
- View results in Dataset tab
Using Apify API
curl -X POST "https://api.apify.com/v2/acts/YOUR_USERNAME~sentiment-analyzer/runs?token=YOUR_TOKEN" \-H "Content-Type: application/json" \-d '{"texts": ["Best product ever!","Worst experience of my life","It works fine I guess"]}'
Using Python
from apify_client import ApifyClientclient = ApifyClient('YOUR_TOKEN')# Analyze textsrun = client.actor('YOUR_USERNAME/sentiment-analyzer').call(run_input={'texts': ['Great customer service!','Product broke after one day','Average quality for the price']})# Get resultsitems = client.dataset(run['defaultDatasetId']).list_items().itemsfor item in items:print(f"{item['sentiment']}: {item['textPreview']}")
Using JavaScript
import { ApifyClient } from 'apify-client';const client = new ApifyClient({ token: 'YOUR_TOKEN' });const run = await client.actor('YOUR_USERNAME/sentiment-analyzer').call({texts: ['Amazing experience!','Terrible waste of money','It is what it is']});const { items } = await client.dataset(run.defaultDatasetId).listItems();console.log(items);
π Integration Pipeline Example
// 1. Scrape reviewsconst scrapeRun = await client.actor('apify/web-scraper').call({startUrls: [{ url: 'https://example.com/reviews' }],pageFunction: async ({ $ }) => {return $('.review').map((i, el) => ({text: $(el).find('.review-text').text()})).get();}});// 2. Analyze sentimentconst sentimentRun = await client.actor('YOUR_USERNAME/sentiment-analyzer').call({datasetId: scrapeRun.defaultDatasetId,textField: 'text'});// 3. Get resultsconst { items } = await client.dataset(sentimentRun.defaultDatasetId).listItems();const stats = items.reduce((acc, item) => {acc[item.sentiment] = (acc[item.sentiment] || 0) + 1;return acc;}, {});console.log('Sentiment Distribution:', stats);
π° Cost Estimation
| Texts | Approx. Time | Compute Units |
|---|---|---|
| 100 | ~2 seconds | ~0.001 |
| 1,000 | ~5 seconds | ~0.002 |
| 10,000 | ~30 seconds | ~0.01 |
| 100,000 | ~3 minutes | ~0.08 |
VADER is extremely efficient - no model loading, no GPU, instant results.
π Accuracy
VADER was validated on social media text and achieves:
- F1 Score: 0.96 on product reviews
- Accuracy: 84% on Twitter sentiment
- Correlation: 0.88 with human raters
β οΈ Limitations
- English Only - VADER is optimized for English text
- Short Text - Best for tweets, reviews, comments (not long documents)
- Context - May miss sarcasm or domain-specific language
- Slang Evolution - Lexicon may not include newest slang
For multilingual or complex analysis, consider BERT-based models.
π§ Technical Details
- Language: Python 3.12
- Library: vaderSentiment 3.3.2
- Memory: 128MB-256MB
- Speed: ~10,000 texts/second
π VADER vs. Other Methods
| Method | Speed | Accuracy | Languages | GPU |
|---|---|---|---|---|
| VADER | β‘ Instant | Good | English | No |
| BERT | Slow | Excellent | Many | Yes |
| TextBlob | Fast | Fair | English | No |
| GPT-4 | Very Slow | Excellent | Many | No* |
*API-based, expensive for high volume
π License
MIT License - see LICENSE for details.
πͺ Apify Store Listing
Keywords: sentiment analysis, VADER, text analysis, opinion mining, social media analysis, product review analysis, customer feedback, NLP, natural language processing, emotion detection, polarity detection, brand monitoring