
AI Product Matcher
No credit card required

AI Product Matcher
No credit card required
Match products across multiple e-commerce websites. Use this AI product matching Actor whenever you need to find matching pairs of products from different online shops for dynamic pricing, competitor analysis or market research.
You can access the AI Product Matcher programmatically from your own applications by using the Apify API. You can choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "ea8tC8XOGb9aMSjkV"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/equidem~ai-product-matcher/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-equidem-ai-product-matcher",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/equidem~ai-product-matcher/runs": {
50 "post": {
51 "operationId": "runs-sync-equidem-ai-product-matcher",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/equidem~ai-product-matcher/run-sync": {
93 "post": {
94 "operationId": "run-sync-equidem-ai-product-matcher",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "input_mapping"
135 ],
136 "properties": {
137 "dataset1_ids": {
138 "title": "Dataset IDs from shop 1 (if applicable)",
139 "type": "array",
140 "description": "IDs of datasets containing information about products from the first shop."
141 },
142 "dataset2_ids": {
143 "title": "Dataset IDs from shop 2 (if applicable)",
144 "type": "array",
145 "description": "IDs of datasets containing information about products from the second shop."
146 },
147 "pair_dataset_ids": {
148 "title": "Pair dataset IDs (will take precedence if filled)",
149 "type": "array",
150 "description": "IDs of datasets where each row contains information about a pair of products you want to match."
151 },
152 "input_mapping": {
153 "title": "Input attributes mapping",
154 "type": "object",
155 "description": "A mapping object specifying which attributes from the data you provided correspond to attributes used by the Product Mapping model. For details see https://apify.com/Equidem/ai-product-matcher#how-to-specify-the-input-datasets"
156 },
157 "output_mapping": {
158 "title": "Output attributes mapping",
159 "type": "object",
160 "description": "A mapping object specifying which attributes from the data you provided should be in the output dataset and under what attribute names. For details see https://apify.com/Equidem/ai-product-matcher#how-to-specify-the-output-dataset-format"
161 },
162 "precision_recall": {
163 "title": "Precision/recall tradeoff",
164 "enum": [
165 "precision",
166 "recall"
167 ],
168 "type": "string",
169 "description": "Specify whether you care more about precision or recall. For explanation, see https://apify.com/Equidem/ai-product-matcher#precisionrecall-tradeoff",
170 "default": "precision"
171 }
172 }
173 },
174 "runsResponseSchema": {
175 "type": "object",
176 "properties": {
177 "data": {
178 "type": "object",
179 "properties": {
180 "id": {
181 "type": "string"
182 },
183 "actId": {
184 "type": "string"
185 },
186 "userId": {
187 "type": "string"
188 },
189 "startedAt": {
190 "type": "string",
191 "format": "date-time",
192 "example": "2025-01-08T00:00:00.000Z"
193 },
194 "finishedAt": {
195 "type": "string",
196 "format": "date-time",
197 "example": "2025-01-08T00:00:00.000Z"
198 },
199 "status": {
200 "type": "string",
201 "example": "READY"
202 },
203 "meta": {
204 "type": "object",
205 "properties": {
206 "origin": {
207 "type": "string",
208 "example": "API"
209 },
210 "userAgent": {
211 "type": "string"
212 }
213 }
214 },
215 "stats": {
216 "type": "object",
217 "properties": {
218 "inputBodyLen": {
219 "type": "integer",
220 "example": 2000
221 },
222 "rebootCount": {
223 "type": "integer",
224 "example": 0
225 },
226 "restartCount": {
227 "type": "integer",
228 "example": 0
229 },
230 "resurrectCount": {
231 "type": "integer",
232 "example": 0
233 },
234 "computeUnits": {
235 "type": "integer",
236 "example": 0
237 }
238 }
239 },
240 "options": {
241 "type": "object",
242 "properties": {
243 "build": {
244 "type": "string",
245 "example": "latest"
246 },
247 "timeoutSecs": {
248 "type": "integer",
249 "example": 300
250 },
251 "memoryMbytes": {
252 "type": "integer",
253 "example": 1024
254 },
255 "diskMbytes": {
256 "type": "integer",
257 "example": 2048
258 }
259 }
260 },
261 "buildId": {
262 "type": "string"
263 },
264 "defaultKeyValueStoreId": {
265 "type": "string"
266 },
267 "defaultDatasetId": {
268 "type": "string"
269 },
270 "defaultRequestQueueId": {
271 "type": "string"
272 },
273 "buildNumber": {
274 "type": "string",
275 "example": "1.0.0"
276 },
277 "containerUrl": {
278 "type": "string"
279 },
280 "usage": {
281 "type": "object",
282 "properties": {
283 "ACTOR_COMPUTE_UNITS": {
284 "type": "integer",
285 "example": 0
286 },
287 "DATASET_READS": {
288 "type": "integer",
289 "example": 0
290 },
291 "DATASET_WRITES": {
292 "type": "integer",
293 "example": 0
294 },
295 "KEY_VALUE_STORE_READS": {
296 "type": "integer",
297 "example": 0
298 },
299 "KEY_VALUE_STORE_WRITES": {
300 "type": "integer",
301 "example": 1
302 },
303 "KEY_VALUE_STORE_LISTS": {
304 "type": "integer",
305 "example": 0
306 },
307 "REQUEST_QUEUE_READS": {
308 "type": "integer",
309 "example": 0
310 },
311 "REQUEST_QUEUE_WRITES": {
312 "type": "integer",
313 "example": 0
314 },
315 "DATA_TRANSFER_INTERNAL_GBYTES": {
316 "type": "integer",
317 "example": 0
318 },
319 "DATA_TRANSFER_EXTERNAL_GBYTES": {
320 "type": "integer",
321 "example": 0
322 },
323 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
324 "type": "integer",
325 "example": 0
326 },
327 "PROXY_SERPS": {
328 "type": "integer",
329 "example": 0
330 }
331 }
332 },
333 "usageTotalUsd": {
334 "type": "number",
335 "example": 0.00005
336 },
337 "usageUsd": {
338 "type": "object",
339 "properties": {
340 "ACTOR_COMPUTE_UNITS": {
341 "type": "integer",
342 "example": 0
343 },
344 "DATASET_READS": {
345 "type": "integer",
346 "example": 0
347 },
348 "DATASET_WRITES": {
349 "type": "integer",
350 "example": 0
351 },
352 "KEY_VALUE_STORE_READS": {
353 "type": "integer",
354 "example": 0
355 },
356 "KEY_VALUE_STORE_WRITES": {
357 "type": "number",
358 "example": 0.00005
359 },
360 "KEY_VALUE_STORE_LISTS": {
361 "type": "integer",
362 "example": 0
363 },
364 "REQUEST_QUEUE_READS": {
365 "type": "integer",
366 "example": 0
367 },
368 "REQUEST_QUEUE_WRITES": {
369 "type": "integer",
370 "example": 0
371 },
372 "DATA_TRANSFER_INTERNAL_GBYTES": {
373 "type": "integer",
374 "example": 0
375 },
376 "DATA_TRANSFER_EXTERNAL_GBYTES": {
377 "type": "integer",
378 "example": 0
379 },
380 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
381 "type": "integer",
382 "example": 0
383 },
384 "PROXY_SERPS": {
385 "type": "integer",
386 "example": 0
387 }
388 }
389 }
390 }
391 }
392 }
393 }
394 }
395 }
396}
🎯 Match products with AI OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for AI Product Matcher from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Actor Metrics
27 monthly users
-
12 bookmarks
81% runs succeeded
14 days response time
Created in Apr 2023
Modified 23 days ago