Mastra.ai MCP Agent avatar
Mastra.ai MCP Agent

Pricing

Pay per event

Go to Store
Mastra.ai MCP Agent

Mastra.ai MCP Agent

Developed by

Jakub Kopecký

Jakub Kopecký

Maintained by Community

🤖 AI agent using mastra.ai with Apify MCP Server. 🚀 Runs queries via OpenAI models, taps Apify Actors for web data, and outputs to datasets. 🛠️

0.0 (0)

Pricing

Pay per event

0

Total users

18

Monthly users

17

Runs succeeded

63%

Last modified

22 days ago

You can access the Mastra.ai MCP Agent programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.

{
"openapi": "3.0.1",
"info": {
"version": "0.0",
"x-build-id": "AdjVzyXODL7iWvbHG"
},
"servers": [
{
"url": "https://api.apify.com/v2"
}
],
"paths": {
"/acts/jakub.kopecky~actor-mastra-mcp-agent/run-sync-get-dataset-items": {
"post": {
"operationId": "run-sync-get-dataset-items-jakub.kopecky-actor-mastra-mcp-agent",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
},
"/acts/jakub.kopecky~actor-mastra-mcp-agent/runs": {
"post": {
"operationId": "runs-sync-jakub.kopecky-actor-mastra-mcp-agent",
"x-openai-isConsequential": false,
"summary": "Executes an Actor and returns information about the initiated run in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/runsResponseSchema"
}
}
}
}
}
}
},
"/acts/jakub.kopecky~actor-mastra-mcp-agent/run-sync": {
"post": {
"operationId": "run-sync-jakub.kopecky-actor-mastra-mcp-agent",
"x-openai-isConsequential": false,
"summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
"tags": [
"Run Actor"
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/inputSchema"
}
}
}
},
"parameters": [
{
"name": "token",
"in": "query",
"required": true,
"schema": {
"type": "string"
},
"description": "Enter your Apify token here"
}
],
"responses": {
"200": {
"description": "OK"
}
}
}
}
},
"components": {
"schemas": {
"inputSchema": {
"type": "object",
"required": [
"prompt",
"modelName",
"actors"
],
"properties": {
"prompt": {
"title": "Prompt",
"type": "string",
"description": "Prompt for the agent."
},
"agentName": {
"title": "Agent name",
"type": "string",
"description": "Name of the agent.",
"default": "Helpful Assistant Agent"
},
"agentInstructions": {
"title": "Agent instructions",
"type": "string",
"description": "Instructions for the agent. Defines who the agent is and what it does.",
"default": "You are a helpful assistant who aims to help users with their questions and tasks. You provide clear, accurate information and guidance while maintaining a friendly and professional attitude."
},
"modelName": {
"title": "OpenAI model",
"enum": [
"gpt-4o",
"gpt-4o-mini"
],
"type": "string",
"description": "The OpenAI model to use. Currently supported models are gpt-4o and gpt-4o-mini.",
"default": "gpt-4o-mini"
},
"mcpUrl": {
"title": "MCP Server URL",
"type": "string",
"description": "The URL of the MCP Server to use.",
"default": "https://actors-mcp-server.apify.actor"
},
"actors": {
"title": "Actors included",
"type": "array",
"description": "List of Apify Actor names to be available to the agent.",
"default": [],
"items": {
"type": "string"
}
},
"toolTimeout": {
"title": "MCP tool call timeout (s)",
"type": "integer",
"description": "Maximum time in seconds to wait for a tool call to complete.",
"default": 300
},
"maxSteps": {
"title": "Maximum steps for tool calls",
"type": "integer",
"description": "Controls the maximum number of sequential LLM calls an agent can make",
"default": 3
},
"debug": {
"title": "Debug",
"type": "boolean",
"description": "If enabled, Actor provides detailed information with tool calls and reasoning.",
"default": false
}
}
},
"runsResponseSchema": {
"type": "object",
"properties": {
"data": {
"type": "object",
"properties": {
"id": {
"type": "string"
},
"actId": {
"type": "string"
},
"userId": {
"type": "string"
},
"startedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"finishedAt": {
"type": "string",
"format": "date-time",
"example": "2025-01-08T00:00:00.000Z"
},
"status": {
"type": "string",
"example": "READY"
},
"meta": {
"type": "object",
"properties": {
"origin": {
"type": "string",
"example": "API"
},
"userAgent": {
"type": "string"
}
}
},
"stats": {
"type": "object",
"properties": {
"inputBodyLen": {
"type": "integer",
"example": 2000
},
"rebootCount": {
"type": "integer",
"example": 0
},
"restartCount": {
"type": "integer",
"example": 0
},
"resurrectCount": {
"type": "integer",
"example": 0
},
"computeUnits": {
"type": "integer",
"example": 0
}
}
},
"options": {
"type": "object",
"properties": {
"build": {
"type": "string",
"example": "latest"
},
"timeoutSecs": {
"type": "integer",
"example": 300
},
"memoryMbytes": {
"type": "integer",
"example": 1024
},
"diskMbytes": {
"type": "integer",
"example": 2048
}
}
},
"buildId": {
"type": "string"
},
"defaultKeyValueStoreId": {
"type": "string"
},
"defaultDatasetId": {
"type": "string"
},
"defaultRequestQueueId": {
"type": "string"
},
"buildNumber": {
"type": "string",
"example": "1.0.0"
},
"containerUrl": {
"type": "string"
},
"usage": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "integer",
"example": 1
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
},
"usageTotalUsd": {
"type": "number",
"example": 0.00005
},
"usageUsd": {
"type": "object",
"properties": {
"ACTOR_COMPUTE_UNITS": {
"type": "integer",
"example": 0
},
"DATASET_READS": {
"type": "integer",
"example": 0
},
"DATASET_WRITES": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_READS": {
"type": "integer",
"example": 0
},
"KEY_VALUE_STORE_WRITES": {
"type": "number",
"example": 0.00005
},
"KEY_VALUE_STORE_LISTS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_READS": {
"type": "integer",
"example": 0
},
"REQUEST_QUEUE_WRITES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_INTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"DATA_TRANSFER_EXTERNAL_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
"type": "integer",
"example": 0
},
"PROXY_SERPS": {
"type": "integer",
"example": 0
}
}
}
}
}
}
}
}
}
}

Mastra.ai MCP Agent OpenAPI definition

OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.

OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.

By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.

You can download the OpenAPI definitions for Mastra.ai MCP Agent from the options below:

If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.

You can also check out our other API clients: