
🌱 Vegan Places Finder
This Actor is unavailable because the developer has decided to deprecate it. Would you like to try a similar Actor instead?
See alternative Actors
🌱 Vegan Places Finder
🌱 This no-code extraction tool will find all vegan restaurants on Google Maps and extract their details. Just enter the country and city of your search, e.g. Chicago, USA, and hit Start. Easy scraping of map data from the web for beginners.
You can access the 🌱 Vegan Places Finder programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "JI9iAHPWIaCtMtJKZ"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/natasha.lekh~vegan-places-finder/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-natasha.lekh-vegan-places-finder",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/natasha.lekh~vegan-places-finder/runs": {
50 "post": {
51 "operationId": "runs-sync-natasha.lekh-vegan-places-finder",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/natasha.lekh~vegan-places-finder/run-sync": {
93 "post": {
94 "operationId": "run-sync-natasha.lekh-vegan-places-finder",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "city",
135 "countryCode"
136 ],
137 "properties": {
138 "countryCode": {
139 "title": "Country",
140 "enum": [
141 "us",
142 "af",
143 "al",
144 "dz",
145 "as",
146 "ad",
147 "ao",
148 "ai",
149 "aq",
150 "ag",
151 "ar",
152 "am",
153 "aw",
154 "au",
155 "at",
156 "az",
157 "bs",
158 "bh",
159 "bd",
160 "bb",
161 "by",
162 "be",
163 "bz",
164 "bj",
165 "bm",
166 "bt",
167 "bo",
168 "ba",
169 "bw",
170 "bv",
171 "br",
172 "io",
173 "bn",
174 "bg",
175 "bf",
176 "bi",
177 "kh",
178 "cm",
179 "ca",
180 "cv",
181 "ky",
182 "cf",
183 "td",
184 "cl",
185 "cn",
186 "cx",
187 "cc",
188 "co",
189 "km",
190 "cg",
191 "cd",
192 "ck",
193 "cr",
194 "ci",
195 "hr",
196 "cu",
197 "cy",
198 "cz",
199 "dk",
200 "dj",
201 "dm",
202 "do",
203 "ec",
204 "eg",
205 "sv",
206 "gq",
207 "er",
208 "ee",
209 "et",
210 "fk",
211 "fo",
212 "fj",
213 "fi",
214 "fr",
215 "gf",
216 "pf",
217 "tf",
218 "ga",
219 "gm",
220 "ge",
221 "de",
222 "gh",
223 "gi",
224 "gr",
225 "gl",
226 "gd",
227 "gp",
228 "gu",
229 "gt",
230 "gn",
231 "gw",
232 "gy",
233 "ht",
234 "hm",
235 "va",
236 "hn",
237 "hk",
238 "hu",
239 "is",
240 "in",
241 "id",
242 "ir",
243 "iq",
244 "ie",
245 "il",
246 "it",
247 "jm",
248 "jp",
249 "jo",
250 "kz",
251 "ke",
252 "ki",
253 "kp",
254 "kr",
255 "kw",
256 "kg",
257 "la",
258 "lv",
259 "lb",
260 "ls",
261 "lr",
262 "ly",
263 "li",
264 "lt",
265 "lu",
266 "mo",
267 "mk",
268 "mg",
269 "mw",
270 "my",
271 "mv",
272 "ml",
273 "mt",
274 "mh",
275 "mq",
276 "mr",
277 "mu",
278 "yt",
279 "mx",
280 "fm",
281 "md",
282 "mc",
283 "mn",
284 "ms",
285 "ma",
286 "mz",
287 "mm",
288 "na",
289 "nr",
290 "np",
291 "nl",
292 "an",
293 "nc",
294 "nz",
295 "ni",
296 "ne",
297 "ng",
298 "nu",
299 "nf",
300 "mp",
301 "no",
302 "om",
303 "pk",
304 "pw",
305 "ps",
306 "pa",
307 "pg",
308 "py",
309 "pe",
310 "ph",
311 "pn",
312 "pl",
313 "pt",
314 "pr",
315 "qa",
316 "re",
317 "ro",
318 "ru",
319 "rw",
320 "sh",
321 "kn",
322 "lc",
323 "pm",
324 "vc",
325 "ws",
326 "sm",
327 "st",
328 "sa",
329 "sn",
330 "cs",
331 "sc",
332 "sl",
333 "sg",
334 "sk",
335 "si",
336 "sb",
337 "so",
338 "za",
339 "gs",
340 "es",
341 "lk",
342 "sd",
343 "sr",
344 "sj",
345 "sz",
346 "se",
347 "ch",
348 "sy",
349 "tw",
350 "tj",
351 "tz",
352 "th",
353 "tl",
354 "tg",
355 "tk",
356 "to",
357 "tt",
358 "tn",
359 "tr",
360 "tm",
361 "tc",
362 "tv",
363 "ug",
364 "ua",
365 "ae",
366 "gb",
367 "um",
368 "uy",
369 "uz",
370 "vu",
371 "ve",
372 "vn",
373 "vg",
374 "vi",
375 "wf",
376 "eh",
377 "ye",
378 "zm",
379 "zw"
380 ],
381 "type": "string",
382 "description": "Set the country where the search should be carried out, e.g., 'United States'. Currently, the scraper doesn't work well for full-country searching of sparsely populated countries like USA or Russia. For these, prefer searching city by city or focus on populated states."
383 },
384 "city": {
385 "title": "City",
386 "type": "string",
387 "description": "Set the city where the search should be carried out, e.g., 'New York'."
388 },
389 "maxCrawledPlacesPerSearch": {
390 "title": "Limit the number of places",
391 "minimum": 1,
392 "type": "integer",
393 "description": "This is the maximum number of results you will obtain. A higher number will take longer to scrape. If you want to scrape all places available, set this value to '9999999'."
394 }
395 }
396 },
397 "runsResponseSchema": {
398 "type": "object",
399 "properties": {
400 "data": {
401 "type": "object",
402 "properties": {
403 "id": {
404 "type": "string"
405 },
406 "actId": {
407 "type": "string"
408 },
409 "userId": {
410 "type": "string"
411 },
412 "startedAt": {
413 "type": "string",
414 "format": "date-time",
415 "example": "2025-01-08T00:00:00.000Z"
416 },
417 "finishedAt": {
418 "type": "string",
419 "format": "date-time",
420 "example": "2025-01-08T00:00:00.000Z"
421 },
422 "status": {
423 "type": "string",
424 "example": "READY"
425 },
426 "meta": {
427 "type": "object",
428 "properties": {
429 "origin": {
430 "type": "string",
431 "example": "API"
432 },
433 "userAgent": {
434 "type": "string"
435 }
436 }
437 },
438 "stats": {
439 "type": "object",
440 "properties": {
441 "inputBodyLen": {
442 "type": "integer",
443 "example": 2000
444 },
445 "rebootCount": {
446 "type": "integer",
447 "example": 0
448 },
449 "restartCount": {
450 "type": "integer",
451 "example": 0
452 },
453 "resurrectCount": {
454 "type": "integer",
455 "example": 0
456 },
457 "computeUnits": {
458 "type": "integer",
459 "example": 0
460 }
461 }
462 },
463 "options": {
464 "type": "object",
465 "properties": {
466 "build": {
467 "type": "string",
468 "example": "latest"
469 },
470 "timeoutSecs": {
471 "type": "integer",
472 "example": 300
473 },
474 "memoryMbytes": {
475 "type": "integer",
476 "example": 1024
477 },
478 "diskMbytes": {
479 "type": "integer",
480 "example": 2048
481 }
482 }
483 },
484 "buildId": {
485 "type": "string"
486 },
487 "defaultKeyValueStoreId": {
488 "type": "string"
489 },
490 "defaultDatasetId": {
491 "type": "string"
492 },
493 "defaultRequestQueueId": {
494 "type": "string"
495 },
496 "buildNumber": {
497 "type": "string",
498 "example": "1.0.0"
499 },
500 "containerUrl": {
501 "type": "string"
502 },
503 "usage": {
504 "type": "object",
505 "properties": {
506 "ACTOR_COMPUTE_UNITS": {
507 "type": "integer",
508 "example": 0
509 },
510 "DATASET_READS": {
511 "type": "integer",
512 "example": 0
513 },
514 "DATASET_WRITES": {
515 "type": "integer",
516 "example": 0
517 },
518 "KEY_VALUE_STORE_READS": {
519 "type": "integer",
520 "example": 0
521 },
522 "KEY_VALUE_STORE_WRITES": {
523 "type": "integer",
524 "example": 1
525 },
526 "KEY_VALUE_STORE_LISTS": {
527 "type": "integer",
528 "example": 0
529 },
530 "REQUEST_QUEUE_READS": {
531 "type": "integer",
532 "example": 0
533 },
534 "REQUEST_QUEUE_WRITES": {
535 "type": "integer",
536 "example": 0
537 },
538 "DATA_TRANSFER_INTERNAL_GBYTES": {
539 "type": "integer",
540 "example": 0
541 },
542 "DATA_TRANSFER_EXTERNAL_GBYTES": {
543 "type": "integer",
544 "example": 0
545 },
546 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
547 "type": "integer",
548 "example": 0
549 },
550 "PROXY_SERPS": {
551 "type": "integer",
552 "example": 0
553 }
554 }
555 },
556 "usageTotalUsd": {
557 "type": "number",
558 "example": 0.00005
559 },
560 "usageUsd": {
561 "type": "object",
562 "properties": {
563 "ACTOR_COMPUTE_UNITS": {
564 "type": "integer",
565 "example": 0
566 },
567 "DATASET_READS": {
568 "type": "integer",
569 "example": 0
570 },
571 "DATASET_WRITES": {
572 "type": "integer",
573 "example": 0
574 },
575 "KEY_VALUE_STORE_READS": {
576 "type": "integer",
577 "example": 0
578 },
579 "KEY_VALUE_STORE_WRITES": {
580 "type": "number",
581 "example": 0.00005
582 },
583 "KEY_VALUE_STORE_LISTS": {
584 "type": "integer",
585 "example": 0
586 },
587 "REQUEST_QUEUE_READS": {
588 "type": "integer",
589 "example": 0
590 },
591 "REQUEST_QUEUE_WRITES": {
592 "type": "integer",
593 "example": 0
594 },
595 "DATA_TRANSFER_INTERNAL_GBYTES": {
596 "type": "integer",
597 "example": 0
598 },
599 "DATA_TRANSFER_EXTERNAL_GBYTES": {
600 "type": "integer",
601 "example": 0
602 },
603 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
604 "type": "integer",
605 "example": 0
606 },
607 "PROXY_SERPS": {
608 "type": "integer",
609 "example": 0
610 }
611 }
612 }
613 }
614 }
615 }
616 }
617 }
618 }
619}
🌱 Vegan Places Finder OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for 🌱 Vegan Places Finder from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: