
Social Media Sentiment Analysis Tool
Pay $1.50 for 1,000 Comments

Social Media Sentiment Analysis Tool
Pay $1.50 for 1,000 Comments
Add a profile name and find this social profile on Facebook, Instagram, and TikTok, scrape its recent posts and comments, and perform sentiment analysis for each comment. All in one go. Export results in JSON, CSV, HTML, use API, schedule runs, integrate with other tools.
You can access the Social Media Sentiment Analysis Tool programmatically from your own applications by using the Apify API. You can choose the language preference from below. To use the Apify API, youāll need an Apify account and your API token, found in Integrations settings in Apify Console.
1{
2 "openapi": "3.0.1",
3 "info": {
4 "version": "0.0",
5 "x-build-id": "hwVAJpUPaE8AObwl6"
6 },
7 "servers": [
8 {
9 "url": "https://api.apify.com/v2"
10 }
11 ],
12 "paths": {
13 "/acts/tri_angle~social-media-sentiment-analysis-tool/run-sync-get-dataset-items": {
14 "post": {
15 "operationId": "run-sync-get-dataset-items-tri_angle-social-media-sentiment-analysis-tool",
16 "x-openai-isConsequential": false,
17 "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.",
18 "tags": [
19 "Run Actor"
20 ],
21 "requestBody": {
22 "required": true,
23 "content": {
24 "application/json": {
25 "schema": {
26 "$ref": "#/components/schemas/inputSchema"
27 }
28 }
29 }
30 },
31 "parameters": [
32 {
33 "name": "token",
34 "in": "query",
35 "required": true,
36 "schema": {
37 "type": "string"
38 },
39 "description": "Enter your Apify token here"
40 }
41 ],
42 "responses": {
43 "200": {
44 "description": "OK"
45 }
46 }
47 }
48 },
49 "/acts/tri_angle~social-media-sentiment-analysis-tool/runs": {
50 "post": {
51 "operationId": "runs-sync-tri_angle-social-media-sentiment-analysis-tool",
52 "x-openai-isConsequential": false,
53 "summary": "Executes an Actor and returns information about the initiated run in response.",
54 "tags": [
55 "Run Actor"
56 ],
57 "requestBody": {
58 "required": true,
59 "content": {
60 "application/json": {
61 "schema": {
62 "$ref": "#/components/schemas/inputSchema"
63 }
64 }
65 }
66 },
67 "parameters": [
68 {
69 "name": "token",
70 "in": "query",
71 "required": true,
72 "schema": {
73 "type": "string"
74 },
75 "description": "Enter your Apify token here"
76 }
77 ],
78 "responses": {
79 "200": {
80 "description": "OK",
81 "content": {
82 "application/json": {
83 "schema": {
84 "$ref": "#/components/schemas/runsResponseSchema"
85 }
86 }
87 }
88 }
89 }
90 }
91 },
92 "/acts/tri_angle~social-media-sentiment-analysis-tool/run-sync": {
93 "post": {
94 "operationId": "run-sync-tri_angle-social-media-sentiment-analysis-tool",
95 "x-openai-isConsequential": false,
96 "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.",
97 "tags": [
98 "Run Actor"
99 ],
100 "requestBody": {
101 "required": true,
102 "content": {
103 "application/json": {
104 "schema": {
105 "$ref": "#/components/schemas/inputSchema"
106 }
107 }
108 }
109 },
110 "parameters": [
111 {
112 "name": "token",
113 "in": "query",
114 "required": true,
115 "schema": {
116 "type": "string"
117 },
118 "description": "Enter your Apify token here"
119 }
120 ],
121 "responses": {
122 "200": {
123 "description": "OK"
124 }
125 }
126 }
127 }
128 },
129 "components": {
130 "schemas": {
131 "inputSchema": {
132 "type": "object",
133 "required": [
134 "profileName"
135 ],
136 "properties": {
137 "profileName": {
138 "title": "Social profile name",
139 "type": "string",
140 "description": "Profile name on any social network"
141 },
142 "sentimentAnalysis": {
143 "title": "Sentiment Analysis for comments",
144 "type": "boolean",
145 "description": "If checked the comments in Dataset will include information about their sentiment score",
146 "default": true
147 },
148 "latestPosts": {
149 "title": "Latest posts",
150 "type": "integer",
151 "description": "Amount of latest posts scraped per each social profile",
152 "default": 10
153 },
154 "latestComments": {
155 "title": "Latest comments",
156 "type": "integer",
157 "description": "Amount of latest comments scraped per each post",
158 "default": 50
159 },
160 "scrapeFacebook": {
161 "title": "Facebook",
162 "type": "boolean",
163 "description": "If checked Facebook social profile will be checked.",
164 "default": true
165 },
166 "scrapeInstagram": {
167 "title": "Instagram",
168 "type": "boolean",
169 "description": "If checked Instagram social profile will be checked.",
170 "default": true
171 },
172 "scrapeTiktok": {
173 "title": "TikTok",
174 "type": "boolean",
175 "description": "If checked TikTok social profile will be checked.",
176 "default": true
177 }
178 }
179 },
180 "runsResponseSchema": {
181 "type": "object",
182 "properties": {
183 "data": {
184 "type": "object",
185 "properties": {
186 "id": {
187 "type": "string"
188 },
189 "actId": {
190 "type": "string"
191 },
192 "userId": {
193 "type": "string"
194 },
195 "startedAt": {
196 "type": "string",
197 "format": "date-time",
198 "example": "2025-01-08T00:00:00.000Z"
199 },
200 "finishedAt": {
201 "type": "string",
202 "format": "date-time",
203 "example": "2025-01-08T00:00:00.000Z"
204 },
205 "status": {
206 "type": "string",
207 "example": "READY"
208 },
209 "meta": {
210 "type": "object",
211 "properties": {
212 "origin": {
213 "type": "string",
214 "example": "API"
215 },
216 "userAgent": {
217 "type": "string"
218 }
219 }
220 },
221 "stats": {
222 "type": "object",
223 "properties": {
224 "inputBodyLen": {
225 "type": "integer",
226 "example": 2000
227 },
228 "rebootCount": {
229 "type": "integer",
230 "example": 0
231 },
232 "restartCount": {
233 "type": "integer",
234 "example": 0
235 },
236 "resurrectCount": {
237 "type": "integer",
238 "example": 0
239 },
240 "computeUnits": {
241 "type": "integer",
242 "example": 0
243 }
244 }
245 },
246 "options": {
247 "type": "object",
248 "properties": {
249 "build": {
250 "type": "string",
251 "example": "latest"
252 },
253 "timeoutSecs": {
254 "type": "integer",
255 "example": 300
256 },
257 "memoryMbytes": {
258 "type": "integer",
259 "example": 1024
260 },
261 "diskMbytes": {
262 "type": "integer",
263 "example": 2048
264 }
265 }
266 },
267 "buildId": {
268 "type": "string"
269 },
270 "defaultKeyValueStoreId": {
271 "type": "string"
272 },
273 "defaultDatasetId": {
274 "type": "string"
275 },
276 "defaultRequestQueueId": {
277 "type": "string"
278 },
279 "buildNumber": {
280 "type": "string",
281 "example": "1.0.0"
282 },
283 "containerUrl": {
284 "type": "string"
285 },
286 "usage": {
287 "type": "object",
288 "properties": {
289 "ACTOR_COMPUTE_UNITS": {
290 "type": "integer",
291 "example": 0
292 },
293 "DATASET_READS": {
294 "type": "integer",
295 "example": 0
296 },
297 "DATASET_WRITES": {
298 "type": "integer",
299 "example": 0
300 },
301 "KEY_VALUE_STORE_READS": {
302 "type": "integer",
303 "example": 0
304 },
305 "KEY_VALUE_STORE_WRITES": {
306 "type": "integer",
307 "example": 1
308 },
309 "KEY_VALUE_STORE_LISTS": {
310 "type": "integer",
311 "example": 0
312 },
313 "REQUEST_QUEUE_READS": {
314 "type": "integer",
315 "example": 0
316 },
317 "REQUEST_QUEUE_WRITES": {
318 "type": "integer",
319 "example": 0
320 },
321 "DATA_TRANSFER_INTERNAL_GBYTES": {
322 "type": "integer",
323 "example": 0
324 },
325 "DATA_TRANSFER_EXTERNAL_GBYTES": {
326 "type": "integer",
327 "example": 0
328 },
329 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
330 "type": "integer",
331 "example": 0
332 },
333 "PROXY_SERPS": {
334 "type": "integer",
335 "example": 0
336 }
337 }
338 },
339 "usageTotalUsd": {
340 "type": "number",
341 "example": 0.00005
342 },
343 "usageUsd": {
344 "type": "object",
345 "properties": {
346 "ACTOR_COMPUTE_UNITS": {
347 "type": "integer",
348 "example": 0
349 },
350 "DATASET_READS": {
351 "type": "integer",
352 "example": 0
353 },
354 "DATASET_WRITES": {
355 "type": "integer",
356 "example": 0
357 },
358 "KEY_VALUE_STORE_READS": {
359 "type": "integer",
360 "example": 0
361 },
362 "KEY_VALUE_STORE_WRITES": {
363 "type": "number",
364 "example": 0.00005
365 },
366 "KEY_VALUE_STORE_LISTS": {
367 "type": "integer",
368 "example": 0
369 },
370 "REQUEST_QUEUE_READS": {
371 "type": "integer",
372 "example": 0
373 },
374 "REQUEST_QUEUE_WRITES": {
375 "type": "integer",
376 "example": 0
377 },
378 "DATA_TRANSFER_INTERNAL_GBYTES": {
379 "type": "integer",
380 "example": 0
381 },
382 "DATA_TRANSFER_EXTERNAL_GBYTES": {
383 "type": "integer",
384 "example": 0
385 },
386 "PROXY_RESIDENTIAL_TRANSFER_GBYTES": {
387 "type": "integer",
388 "example": 0
389 },
390 "PROXY_SERPS": {
391 "type": "integer",
392 "example": 0
393 }
394 }
395 }
396 }
397 }
398 }
399 }
400 }
401 }
402}
š¤ Social Media Sentiment Analysis Tool OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Social Media Sentiment Analysis Tool from the options below:
If youād like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients:
Actor Metrics
128 monthly users
-
30 bookmarks
83% runs succeeded
2.5 hours response time
Created in May 2024
Modified 3 months ago