Smart CV-to-LinkedIn Jobs Finder
Pricing
Pay per event
Smart CV-to-LinkedIn Jobs Finder
Instantly matches your CV to relevant LinkedIn job listings using AI. Upload your resume and get a tailored list of jobs that fit your skills and experience. No manual searching—just fast, accurate job matching. Get tailored listings based on your skills, location, and commute distance.
0.0 (0)
Pricing
Pay per event
0
Total users
7
Monthly users
7
Runs succeeded
20%
Last modified
2 days ago
You can access the Smart CV-to-LinkedIn Jobs Finder programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
{ "openapi": "3.0.1", "info": { "version": "0.0", "x-build-id": "cb2d1lkE8JXccy2eS" }, "servers": [ { "url": "https://api.apify.com/v2" } ], "paths": { "/acts/dr.ollie~smart-cv-to-linkedin-jobs-finder/run-sync-get-dataset-items": { "post": { "operationId": "run-sync-get-dataset-items-dr.ollie-smart-cv-to-linkedin-jobs-finder", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } }, "/acts/dr.ollie~smart-cv-to-linkedin-jobs-finder/runs": { "post": { "operationId": "runs-sync-dr.ollie-smart-cv-to-linkedin-jobs-finder", "x-openai-isConsequential": false, "summary": "Executes an Actor and returns information about the initiated run in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/runsResponseSchema" } } } } } } }, "/acts/dr.ollie~smart-cv-to-linkedin-jobs-finder/run-sync": { "post": { "operationId": "run-sync-dr.ollie-smart-cv-to-linkedin-jobs-finder", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } } }, "components": { "schemas": { "inputSchema": { "type": "object", "properties": { "cvFilePath": { "title": "CV File", "type": "string", "description": "Upload the CV file (.pdf, .docx or .txt)." }, "cvText": { "title": "CV (paste into text field)", "type": "string", "description": "Paste the full CV text here.", "default": "Curriculum Vitae\nPersonal Information\nName: Sofie Van den Broeck\nAddress: Kortrijksepoortstraat 5, 9000 Ghent, Belgium\nEmail: sofie.vandenbroeck@example.com\nPhone: +32 498 12 34 56\nLinkedIn: linkedin.com/in/sofievdb\nProfessional Summary\nDriven Data Engineer with over 5 years of experience designing, implementing, and optimizing data platforms. Specialized in ETL processes, data warehousing, and cloud solutions. Strong analytical skills and a passion for data-driven decision-making.\nWork Experience\nData Engineer\nTechNova Solutions, Ghent\nSeptember 2021 – Present\n- Designed and maintained data lakes on AWS (S3, Glue, Redshift).\n- Developed ETL pipelines using Apache Airflow and Python.\n- Implemented data integrity checks and optimized query performance.\n- Collaborated with data scientists to support machine learning workflows.\n- Mentored junior data engineers and coordinated releases with DevOps teams.\nJunior Data Engineer\nDataInsights BVBA, Ghent\nJanuary 2019 – August 2021\n- Assisted in building an Azure Data Factory pipeline for data source integration.\n- Wrote SQL queries and optimized existing stored procedures.\n- Created Power BI dashboards to visualize KPIs for internal stakeholders.\n- Conducted data extraction and transformation tasks using Python and Pandas.\nEducation\nMaster of Computer Science\nUniversity of Ghent\nSeptember 2016 – June 2018\nGraduated with distinction, specializing in Data Technology.\nBachelor of Informatics\nUniversity College Ghent\nSeptember 2013 – June 2016\nFocused on software development and databases.\nTechnical Skills\nProgramming Languages: Python, SQL, Java\nBig Data: Apache Spark, Hadoop\nDatabases: PostgreSQL, MySQL, Redshift\nCloud: AWS (S3, Glue, Redshift, EC2), Azure (Data Factory, Data Lake)\nTools: Apache Airflow, Docker, Kubernetes\nData Visualization: Power BI, Tableau\nCertifications\n- AWS Certified Solutions Architect – Associate (2022)\n- Microsoft Certified: Azure Data Engineer Associate (2021)\nProjects\n- Real-time Streaming Data Pipeline: Implemented using Kafka and Spark Streaming for e-commerce data.\n- On-Premise to AWS Redshift Migration: Managed a full migration of a legacy data warehouse, including redesign of ETL processes.\n- Anomaly Detection Model: Developed in collaboration with the data science team to detect fraudulent transactions.\nLanguages\nDutch: Native\nEnglish: Fluent\nFrench: Intermediate" }, "numJobs": { "title": "Number of job postings to fetch", "minimum": 1, "type": "integer", "description": "Maximum number of LinkedIn job posts to retrieve.", "default": 20 }, "maxDistanceKm": { "title": "Maximum distance (km)", "minimum": 0, "type": "integer", "description": "Maximum distance in kilometers between candidate and job location.", "default": 50 } } }, "runsResponseSchema": { "type": "object", "properties": { "data": { "type": "object", "properties": { "id": { "type": "string" }, "actId": { "type": "string" }, "userId": { "type": "string" }, "startedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "finishedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "status": { "type": "string", "example": "READY" }, "meta": { "type": "object", "properties": { "origin": { "type": "string", "example": "API" }, "userAgent": { "type": "string" } } }, "stats": { "type": "object", "properties": { "inputBodyLen": { "type": "integer", "example": 2000 }, "rebootCount": { "type": "integer", "example": 0 }, "restartCount": { "type": "integer", "example": 0 }, "resurrectCount": { "type": "integer", "example": 0 }, "computeUnits": { "type": "integer", "example": 0 } } }, "options": { "type": "object", "properties": { "build": { "type": "string", "example": "latest" }, "timeoutSecs": { "type": "integer", "example": 300 }, "memoryMbytes": { "type": "integer", "example": 1024 }, "diskMbytes": { "type": "integer", "example": 2048 } } }, "buildId": { "type": "string" }, "defaultKeyValueStoreId": { "type": "string" }, "defaultDatasetId": { "type": "string" }, "defaultRequestQueueId": { "type": "string" }, "buildNumber": { "type": "string", "example": "1.0.0" }, "containerUrl": { "type": "string" }, "usage": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "integer", "example": 1 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } }, "usageTotalUsd": { "type": "number", "example": 0.00005 }, "usageUsd": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "number", "example": 0.00005 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } } } } } } } }}
Smart CV-to-LinkedIn Jobs Finder OpenAPI definition
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Smart CV-to-LinkedIn Jobs Finder from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: