
Actors Monitoring
Pricing
Pay per usage
Go to Apify Store

Actors Monitoring
Under maintenance0.0 (0)
Pricing
Pay per usage
0
2
1
Last modified
2 days ago
Pricing
Pay per usage
0.0 (0)
Pricing
Pay per usage
0
2
1
Last modified
2 days ago
You can access the Actors Monitoring programmatically from your own applications by using the Apify API. You can also choose the language preference from below. To use the Apify API, you’ll need an Apify account and your API token, found in Integrations settings in Apify Console.
{ "openapi": "3.0.1", "info": { "version": "0.0", "x-build-id": "yXnq4ulJLeJnDy4lm" }, "servers": [ { "url": "https://api.apify.com/v2" } ], "paths": { "/acts/hamza.alwan~actors-monitoring/run-sync-get-dataset-items": { "post": { "operationId": "run-sync-get-dataset-items-hamza.alwan-actors-monitoring", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for its completion, and returns Actor's dataset items in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } }, "/acts/hamza.alwan~actors-monitoring/runs": { "post": { "operationId": "runs-sync-hamza.alwan-actors-monitoring", "x-openai-isConsequential": false, "summary": "Executes an Actor and returns information about the initiated run in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/runsResponseSchema" } } } } } } }, "/acts/hamza.alwan~actors-monitoring/run-sync": { "post": { "operationId": "run-sync-hamza.alwan-actors-monitoring", "x-openai-isConsequential": false, "summary": "Executes an Actor, waits for completion, and returns the OUTPUT from Key-value store in response.", "tags": [ "Run Actor" ], "requestBody": { "required": true, "content": { "application/json": { "schema": { "$ref": "#/components/schemas/inputSchema" } } } }, "parameters": [ { "name": "token", "in": "query", "required": true, "schema": { "type": "string" }, "description": "Enter your Apify token here" } ], "responses": { "200": { "description": "OK" } } } } }, "components": { "schemas": { "inputSchema": { "type": "object", "required": [ "actorMode" ], "properties": { "actorMode": { "title": "Report Mode", "enum": [ "compare", "monthly" ], "type": "string", "description": "Choose which type of report to generate.", "default": "monthly" }, "useDirectActorRuns": { "title": "Use Direct Actor Runs (Skip Tasks)", "type": "boolean", "description": "If enabled, fetches runs directly from actors instead of going through tasks. This is useful for monitoring Actors without tasks.", "default": true }, "emailRecipients": { "title": "Email Recipients", "type": "array", "description": "List of email addresses to receive the generated reports.", "items": { "type": "string" } }, "token": { "title": "Apify API Token", "type": "string", "description": "Optional Apify API token. If not provided, will use the current user token." }, "actorNameInclude": { "title": "Include Actors", "type": "array", "description": "Only process actors whose names contain any of these substrings.", "items": { "type": "string" } }, "actorNameExclude": { "title": "Exclude Actors", "type": "array", "description": "Skip actors whose names contain any of these substrings.", "items": { "type": "string" } }, "taskNameInclude": { "title": "Include Tasks (Ignored in useDirectActorRuns: true)", "type": "array", "description": "Only process tasks whose names contain any of these substrings. (Ignored when Direct Actor Runs is enabled)", "items": { "type": "string" } }, "taskNameExclude": { "title": "Exclude Tasks (Ignored in useDirectActorRuns: true)", "type": "array", "description": "Skip tasks whose names contain any of these substrings. (Ignored when Direct Actor Runs is enabled)", "items": { "type": "string" } }, "filterRunsByStatus": { "title": "Filter Runs by Status", "type": "array", "description": "Run statuses to filter by in monthly reports. If not provided, all statuses will be included.", "items": { "type": "string", "enum": [ "SUCCEEDED", "FAILED", "ABORTED", "RUNNING", "TIMED-OUT" ], "enumTitles": [ "Succeeded", "Failed", "Aborted", "Running", "Timed Out" ] }, "default": [] }, "compareRunId1": { "title": "First Run ID (Comparison Mode)", "type": "string", "description": "Optional: Specific run ID for comparison. If both compareRunId1 and compareRunId2 are provided, these specific runs will be compared instead of fetching the most recent runs. Only used in compare mode." }, "compareRunId2": { "title": "Second Run ID (Comparison Mode)", "type": "string", "description": "Optional: Second specific run ID for comparison. If both compareRunId1 and compareRunId2 are provided, these specific runs will be compared instead of fetching the most recent runs. Only used in compare mode." }, "fieldsAndCompareStrategy": { "title": "Field Comparison Strategies", "type": "object", "description": "<h3>🎯 Define Custom Comparison Strategies</h3><p>Specify how each field should be compared between runs. If not provided, the system will use intelligent auto-detection.</p><h4>📊 Available Strategies:</h4><ul><li><strong>count</strong> - Compare number of items containing the field</li><li><strong>sum</strong> - Compare total sum of all numeric values</li><li><strong>average</strong> - Compare average of all numeric values</li><li><strong>array_length</strong> - Compare total length of all arrays combined</li><li><strong>coverage</strong> - Compare percentage of items that have this field populated</li></ul>", "default": {} }, "combineEmails": { "title": "Combine Emails", "type": "boolean", "description": "When enabled, all comparisons are combined into a single email with one unified table. When disabled, each comparison is sent as a separate email.", "default": true }, "notifyOnSignificantChange": { "title": "Email Only for Significant Changes - Compare Mode (5% Items Count Threshold)", "type": "boolean", "description": "When enabled, comparison emails are only sent if the items count difference between runs exceeds 5%. This reduces noise from minor fluctuations in dataset sizes while ensuring you're notified of meaningful changes in data volume. Examples: 1,000 → 1,030 items (+3%): No email sent | 1,000 → 1,060 items (+6%): Email sent | 0 → any items: Always email sent.", "default": true }, "customDimensions": { "title": "Custom Dimensions for Monthly Reports", "type": "array", "description": "<h3>🎯 Custom Categorization Dimensions</h3><p>Define custom dimensions for organizing runs in monthly reports beyond the default time-based categorization.</p><h4>📋 Properties:</h4><ul><li><strong>field</strong> - Path to extract values from run data (e.g. 'actorName', 'status', 'stats.runTimeSecs')</li><li><strong>label</strong> - Display label for reports (optional)</li><li><strong>fallback</strong> - Default value when field is missing (optional)</li></ul>", "items": { "type": "object", "properties": { "field": { "type": "string", "title": "Field Path", "description": "Path to extract values from run data using dot notation" }, "label": { "type": "string", "title": "Display Label", "description": "Human-readable label for this dimension" }, "fallback": { "type": "string", "title": "Fallback Value", "description": "Default value when field is missing or null" } }, "required": [ "field" ] } }, "monthsToAnalyze": { "title": "Months to Analyze", "minimum": 1, "maximum": 24, "type": "integer", "description": "Number of full calendar months to analyze for monthly reports. For example, 3 means the last 3 complete calendar months. Must be between 1 and 24 months.", "default": 3 }, "maxRuns": { "title": "Max Runs per Actor/Task", "minimum": 1, "maximum": 1000, "type": "integer", "description": "Maximum number of runs to analyze per actor or task in monthly reports. Higher values provide more comprehensive data but may increase processing time.", "default": 100 } } }, "runsResponseSchema": { "type": "object", "properties": { "data": { "type": "object", "properties": { "id": { "type": "string" }, "actId": { "type": "string" }, "userId": { "type": "string" }, "startedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "finishedAt": { "type": "string", "format": "date-time", "example": "2025-01-08T00:00:00.000Z" }, "status": { "type": "string", "example": "READY" }, "meta": { "type": "object", "properties": { "origin": { "type": "string", "example": "API" }, "userAgent": { "type": "string" } } }, "stats": { "type": "object", "properties": { "inputBodyLen": { "type": "integer", "example": 2000 }, "rebootCount": { "type": "integer", "example": 0 }, "restartCount": { "type": "integer", "example": 0 }, "resurrectCount": { "type": "integer", "example": 0 }, "computeUnits": { "type": "integer", "example": 0 } } }, "options": { "type": "object", "properties": { "build": { "type": "string", "example": "latest" }, "timeoutSecs": { "type": "integer", "example": 300 }, "memoryMbytes": { "type": "integer", "example": 1024 }, "diskMbytes": { "type": "integer", "example": 2048 } } }, "buildId": { "type": "string" }, "defaultKeyValueStoreId": { "type": "string" }, "defaultDatasetId": { "type": "string" }, "defaultRequestQueueId": { "type": "string" }, "buildNumber": { "type": "string", "example": "1.0.0" }, "containerUrl": { "type": "string" }, "usage": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "integer", "example": 1 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } }, "usageTotalUsd": { "type": "number", "example": 0.00005 }, "usageUsd": { "type": "object", "properties": { "ACTOR_COMPUTE_UNITS": { "type": "integer", "example": 0 }, "DATASET_READS": { "type": "integer", "example": 0 }, "DATASET_WRITES": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_READS": { "type": "integer", "example": 0 }, "KEY_VALUE_STORE_WRITES": { "type": "number", "example": 0.00005 }, "KEY_VALUE_STORE_LISTS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_READS": { "type": "integer", "example": 0 }, "REQUEST_QUEUE_WRITES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_INTERNAL_GBYTES": { "type": "integer", "example": 0 }, "DATA_TRANSFER_EXTERNAL_GBYTES": { "type": "integer", "example": 0 }, "PROXY_RESIDENTIAL_TRANSFER_GBYTES": { "type": "integer", "example": 0 }, "PROXY_SERPS": { "type": "integer", "example": 0 } } } } } } } } }}
OpenAPI is a standard for designing and describing RESTful APIs, allowing developers to define API structure, endpoints, and data formats in a machine-readable way. It simplifies API development, integration, and documentation.
OpenAPI is effective when used with AI agents and GPTs by standardizing how these systems interact with various APIs, for reliable integrations and efficient communication.
By defining machine-readable API specifications, OpenAPI allows AI models like GPTs to understand and use varied data sources, improving accuracy. This accelerates development, reduces errors, and provides context-aware responses, making OpenAPI a core component for AI applications.
You can download the OpenAPI definitions for Actors Monitoring from the options below:
If you’d like to learn more about how OpenAPI powers GPTs, read our blog post.
You can also check out our other API clients: